
5/13/2020

1

Physical Data 
Warehousing 

Design

Physical Data 
Warehousing 

Design

1

Moving from Logical to Physical 
Design

• Logical design is what you draw with a 
pen and paper or design with Oracle 
Warehouse Builder or Designer before 
building your warehouse. 

• Physical design is the creation of the 
database with SQL statements.

Moving from Logical to Physical 
Design

• During the physical design process, you 
convert the data gathered during the 
logical design phase into a description 
of the physical database structure. 

• Physical design decisions are mainly 
driven by query performance and 
database maintenance aspects. 

Physical Design
• During the logical design phase, you 

defined a model for your data 
warehouse consisting of entities, 
attributes, and relationships. 

• The entities are linked together using 
relationships. 

• Attributes are used to describe the 
entities.

• The unique identifier (UID) 
distinguishes between one instance of 
an entity and another.

Physical Design

• Figure below offers a graphical way of 
looking at the different ways of 
thinking about logical and physical 
designs.

Logical Design Compared with 
Physical Design



5/13/2020

2

Logical Design Compared with 
Physical Design

• During the physical design process, 
• you translate the expected schemas 

into actual database structures. 
• At this time, you have to map:

Logical Design Compared with 
Physical Design

• Entities to tables 
• Relationships to foreign key constraints 
• Attributes to columns 
• Primary unique identifiers to primary 

key constraints 
• Unique identifiers to unique key 

constraints 

Physical Design Structures
• Once you have converted your logical 

design to a physical one, 
• you will need to create some or all of 

the following structures:
– Tablespaces 
– Tables and Partitioned Tables 
– Views 
– Integrity Constraints 
– Dimensions 

Physical Design Structures
• Some of these structures require disk 

space.
• Others exist only in the data dictionary.
• Additionally, the following structures 

may be created for performance 
improvement:

• Indexes and Partitioned Indexes 
• Materialized Views 

Tablespaces
• A tablespace consists of one or more 

datafiles, 
• which are physical structures within 

the operating system you are using. 
• A datafile is associated with only one 

tablespace. 
• From a design perspective, tablespaces 

are containers for physical design 
structures.

Physical Design Structures
• Tablespaces need to be separated by 

differences. 
• For example, tables should be 

separated from their indexes and
• small tables should be separated from 

large tables. 



5/13/2020

3

Physical Design Structures
• Tablespaces should also represent 

logical business units if possible.
• Because a tablespace is the coarsest 

granularity for backup and
• recovery or the transportable 

tablespaces mechanism, 
• the logical business design affects 

availability and maintenance operations.

Tables and Partitioned Tables
• Tables are the basic unit of data 

storage. 
• They are the container for the 

expected amount of raw data in your 
data warehouse.

• Using partitioned tables instead of 
nonpartitioned ones addresses the key 
problem of supporting very large data 
volumes 

Physical Design Structures
• by allowing you to decompose them into 

smaller and more manageable pieces.
• The main design criterion for 

partitioning is manageability, 
• though you will also see performance 

benefits in most cases because of 
partition pruning or intelligent parallel 
processing. 

Physical Design Structures
• For example, you might choose a 

partitioning strategy based on a sales 
transaction date and a monthly 
granularity. 

• If you have four years' worth of data, 
you can delete a month's data as it 
becomes older than four years with a 
single, quick DDL statement and 

• load new data while only affecting 
1/48th of the complete table. 

Physical Design Structures
• Business questions regarding the last 

quarter will only affect three months, 
which is equivalent to three partitions, 
or 3/48ths of the total volume.

• Partitioning large tables improves 
performance because each partitioned 
piece is more manageable. 



5/13/2020

4

Physical Design Structures

• Typically, you partition based on 
transaction dates in a data warehouse. 

• For example, each month, one month's 
worth of data can be assigned its own 
partition.

Data Segment Compression

• You can save disk space by compressing 
heap-organized tables. 

• A typical type of heap-organized table 
you should consider for data segment 
compression is partitioned tables.

• To reduce disk use and memory use 
(specifically, the buffer cache),

Data Segment Compression

• you can store tables and partitioned 
tables in a compressed format inside 
the database. 

• This often leads to a better scaleup for 
read-only operations. 

• Data segment compression can also 
speed up query execution. 

Data Segment Compression
• There is, however, a cost in CPU 

overhead.
• Data segment compression should be 

used with highly redundant data,
• such as tables with many foreign keys. 
• You should avoid compressing tables 

with much update or other DML 
activity. 

Data Segment Compression

• Although compressed tables or 
partitions are updatable, 

• there is some overhead in updating 
these tables, and 

• high update activity may work against 
compression by causing some space to 
be wasted.

Views
• A view is a tailored presentation of the 

data contained in one or more tables or 
other views. 

• A view takes the output of a query and 
treats it as a table. 

• Views do not require any space in the 
database.



5/13/2020

5

Integrity Constraints
• Integrity constraints are used to 

enforce business rules associated with 
your database and to prevent having 
invalid information in the tables. 

• Integrity constraints in data 
warehousing differ from constraints in 
OLTP environments. 

Integrity Constraints

• In OLTP environments, they primarily 
prevent the insertion of invalid data 
into a record, 

• which is not a big problem in data 
warehousing environments because 
accuracy has already been guaranteed. 

Integrity Constraints
• In data warehousing environments, 

constraints are only used for query 
rewrite. 

• NOT NULL constraints are particularly 
common in data warehouses.

• Under some specific circumstances, 
constraints need space in the database. 

• These constraints are in the form of 
the underlying unique index.

Indexes and Partitioned 
Indexes

• Indexes are optional structures 
associated with tables or clusters. 

• In addition to the classical B-tree 
indexes, bitmap indexes are very 
common in data warehousing 
environments.

• Bitmap indexes are optimized index 
structures for set-oriented operations. 

Indexes and Partitioned 
Indexes

• Additionally, they are necessary for 
some optimized data access methods 
such as star transformations.

• Indexes are just like tables in that you 
can partition them,

Indexes and Partitioned 
Indexes

• although the partitioning strategy is 
not dependent upon the table structure. 

• Partitioning indexes makes it easier to 
manage the warehouse during refresh 
and improves query performance.



5/13/2020

6

Materialized Views
• Materialized views are query results 

that have been stored in advance 
• so long-running calculations are not 

necessary when you actually execute 
your SQL statements. 

• From a physical design point of view,
• materialized views resemble tables or 

partitioned tables and behave like 
indexes.

Questions

32


