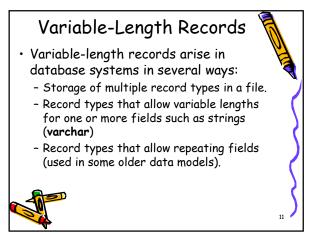
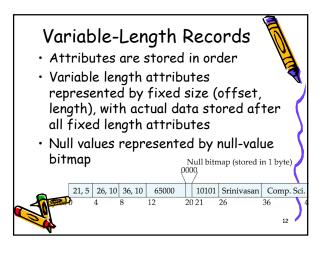
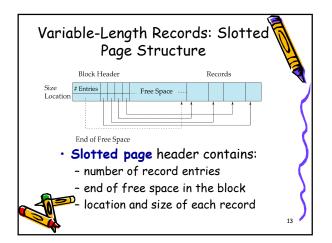
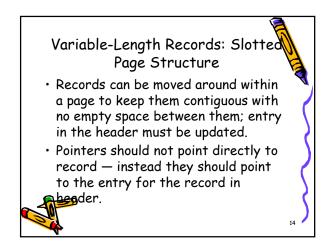


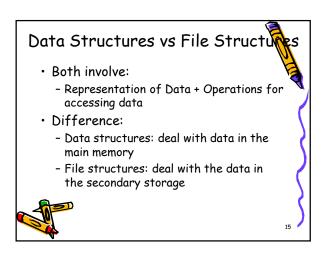
F	ixed-L	.ength R	ecords	
record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 3	22222	Einstein	Physics	95000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
reconse	98345	Kim	Elec. Eng.	80000
				5

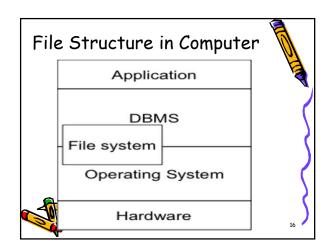

Deleting record 3 and compacting					
record 0	10101	Srinivasan	Comp. Sci.	65000	3
record 1	12121	Wu	Finance	90000	
record 2	15151	Mozart	Music	40000	
record 4	32343	El Said	History	60000] (
record 5	33456	Gold	Physics	87000	}
record 6	45565	Katz	Comp. Sci.	75000] (
record 7	58583	Califieri	History	62000	
record 8	76543	Singh	Finance	80000	
record 9	76766	Crick	Biology	72000	
record 10	83821	Brandt	Comp. Sci.	92000	
Precedent II	98345	Kim	Elec. Eng.	80000	
					6

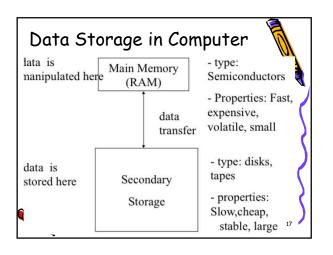

Deleting record 3 and moving last record					
record 0	10101	Srinivasan	Comp. Sci.	65000	
record 1	12121	Wu	Finance	90000	
record 2	15151	Mozart	Music	40000	
record 11	98345	Kim	Elec. Eng.	80000	
record 4	32343	El Said	History	60000	
record 5	33456	Gold	Physics	87000	(
record 6	45565	Katz	Comp. Sci.	75000	
record 7	58583	Califieri	History	62000	1
record 8	76543	Singh	Finance	80000	
record 9	76766	Crick	Biology	72000	1
referend 10	83821	Brandt	Comp. Sci.	92000	
					; /

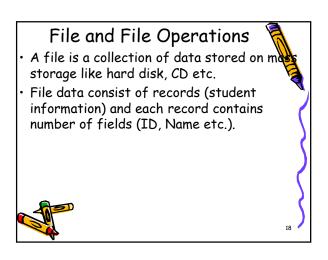


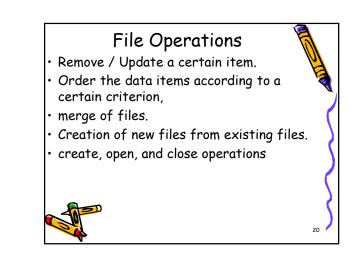


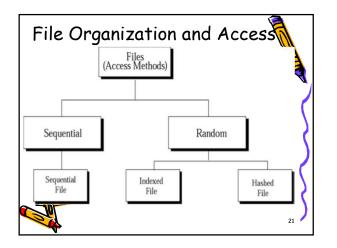

Free Lists					
header				`	
record 0	10101	Srinivasan	Comp. Sci.	65000	$ > \mathbf{P}$
record 1				A.	< '
record 2	15151	Mozart	Music	40000	
record 3	22222	Einstein	Physics	95000	
record 4					
record 5	33456	Gold	Physics	87000	
record 6				<u>*</u>	
record 7	58583	Califieri	History	62000	
record 8	76543	Singh	Finance	80000	(
record 9	76766	Crick	Biology	72000	
record 10	83821	Brandt	Comp. Sci.	92000	
TOCHER	98345	Kim	Elec. Eng.	80000	
					10

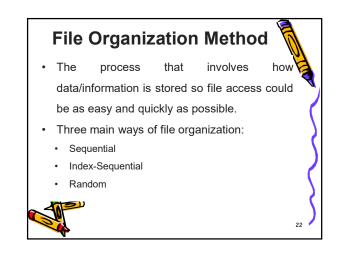


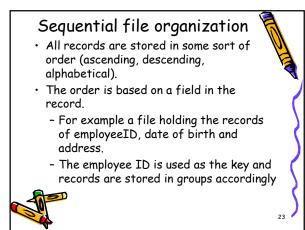


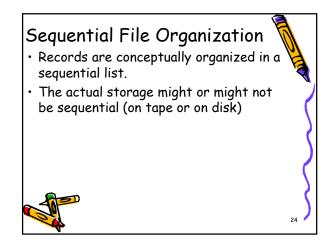


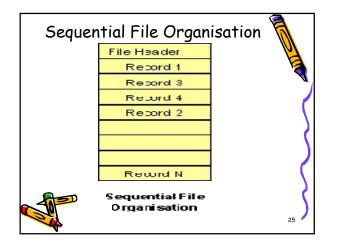


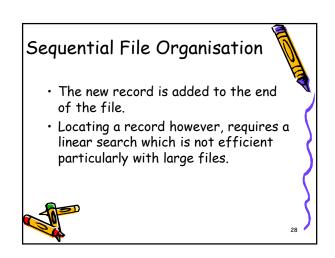




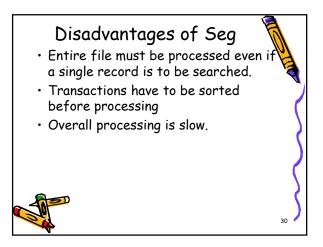

File and File Operations


- Operations on files can be viewed as either a retrieval operation, where the record is selected from the file according to specific search conditions but not changed, or
- an **update operation** which also involves a search and changes the file.
- The search may be for a specific record, a group of records or a specific location in the file.





Sequential File Organisation In Ordered sequential files, it is easy to locate and read from the file in order of key value. A search is on key values is efficient and relatively fast if a binary search algorithm is used.


Sequential File Organisation

- inserting and deleting from ordered sequential files requires several manipulations and is not very efficient.
- Sequential files can also be unordered.
- These are called Heap files. Unordered files are very easy to insert new records.

Advantages of Seq

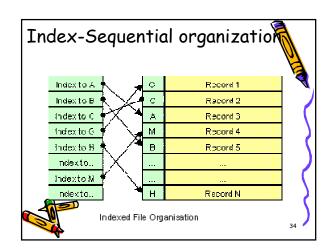
- Simple file design
- Very efficient when most of the records must be processed e.g. Payroll
- Very efficient if the data has a natural order
- Can be stored on inexpensive devices like magnetic tape.

Index-Sequential organization

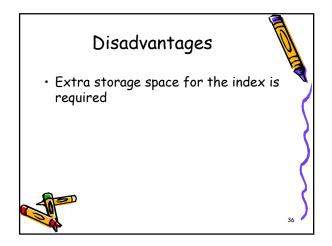
- The records are stored in some order but there is a second file called the index-file that indicates where exactly certain key points are.
- Can not be used with sequential access method.

Index-Sequential organization

- In this type of file organisation an index table or file is created.
- The index file contains key value(s) that can be matched with key values in one or more records.
- The index also contains the disk address of the record.



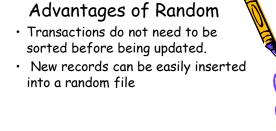
Index-Sequential organizatio


- To locate a record, the index is accessed first using some search algorithm.
- When the key value is found a pointer in the index file contains the address of the matching record(s).
- New records can be easily added to or deleted from the record file.

33

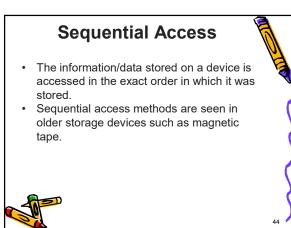
Advantages • Provides flexibility for users who need both type of accesses with the same file. • Faster than sequential.

Random file organization

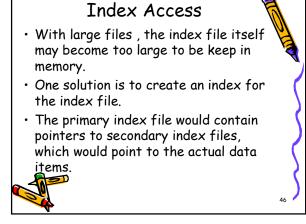

- The records are stored randomly bu each record has its own specific position on the disk (address).
- With this method no time could be wasted searching for a file.
- Instead it jumps to the exact position and access the data/information.

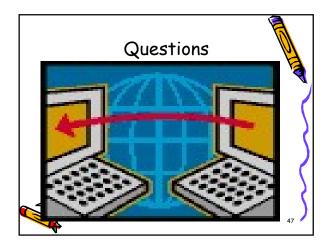
Advantages of Random

- Records are quickly accessed (i.e. there is fast access to records).
- Files are easily updated (i.e. adding, deleting, and amending the records is easily achieved).
- The method does not require the use of indexes, hence saving space.



DisAdvantages of Random Expensive hardware and software resources are required. Relatively complex when programming. System design based on random file organization is complex and costly.


Direct Access


- the information/data stored on a device can be accessed randomly and immediately irrespective to the order it was stored.
- The data with this access method is quicker than sequential access.
- This is also known as random access method.
 - For example Hard disk, Flash Memory

Index Access:

- In this method an index is created which contains a key field and pointers to the various block.
- To find an entry in the file for a key value , we first search the index and then use the pointer to directly access a file and find the desired entry.

