
4/15/2020

1

Physical Database 
Design and Tuning 
Physical Database 
Design and Tuning 

1

Physical Database Design
• It is the process of transforming a 

logical data model into a physical 
model of a database. 

• Unlike a logical design, a physical 
database design is optimized for 
data-access paths, performance 
requirements and other constraints 
of the target environment, i.e. 
hardware and software. 

2

Physical Database Design
• Before you can begin the physical 

design, you must have: 
– (1) logical database design

• minimally third normal form 
– (2) Transaction characterization, such as 

• most frequent transactions 
• most complex or resource-insensitive 

transactions 
• distributions of transactions, over time 
• mix of insert, update, delete and select 

statements
• most critical transactions to the applications

3

Physical Database Design
• (3) Performance requirements

4

Physical dB design activities
• 1. Defining Tables and Columns –

– The initial transformation of the logical 
model into a physical model, including 
naming objects, choosing data types and 
lengths, and handling null values. 

• 2. Defining Keys –
– Choosing primary and foreign keys, 

including the use of surrogate keys. 

5

Physical dB design activities
• 3. Identifying Critical Transactions –

– Identifying business transactions that 
are high-value, mission-critical, 
frequently performed, or costly in 
terms of computing resources.

• 4. Adding Redundant Columns –
– The first of a series of denormalization 

techniques: adding columns to tables 
that exist in other tables. 

6



4/15/2020

2

Physical dB design activities
• 5. Adding Derived Columns –

– Adding a column to a table based on the 
values or existence of values in other 
columns in any table. 

• 6. Collapsing Tables –
– Combining two or more tables into one 

table. 
• 7. Splitting Tables –

– Partitioning a table into two or more 
disjoint tables. Partitioning may be 
horizontal (row-wise) or vertical 
(column-wise) 7

Physical dB design activities
• 8. Handling Supertypes and Subtypes 

– Deciding how to implement tables that 
are involved in a supertype-subtype 
relationship in the logical model. 

• 9. Duplicating Parts of Tables –
– Duplicating data vertically and / or 

horizontally into new tables. 
• 10. Adding Tables for Derived Data –

– Creating new tables that hold data 
derived in columns from other tables

8

Physical dB design activities
• 11. Handling Vector Data –

– Deciding how to implement tables that 
contain plural attributes or vector data. 
Row-wise and column-wise 
implementations are discussed. 

• 12. Generating Sequence Numbers –
– Choosing a strategy to generate 

sequence numbers, and the appropriate 
tables and columns to support the 
strategy.

9

Physical dB design activities
• 13. Specifying Indexes –

– Specifying indexes to improve data 
access performance or to enforce 
uniqueness. 

• 14. Maintaining Row Uniqueness –
– Maintaining the uniqueness or 

primarykey values.
• 15. Handling Domain Restriction –

– Defining SQL Server rules and defaults 
on the columns of a table to maintain 
valid data values in columns.

10

Physical dB design activities
• 16. Handling Referential Integrity –

– Deciding how to handle primary-key 
updates and deletes, and foreign-key 
inserts and updates. Using triggers to 
ensure referential integrity. 

• 17. Maintaining Derived and 
Redundant Data –
– Specifying how data integrity will be 

maintained if the data model contains 
derived or redundant data.

11

Physical dB design activities
• 18. Handling Complex Integrity 

Constraints –
– Deciding how to handle complex business 

rules such as sequence rules, cross-
domain business rules, and complex data 
domain rules. Using triggers to 
implement complex business rules. 

• 19. Controlling Access to Data –
– Restricting access to commands and 

data. 

12



4/15/2020

3

Physical dB design activities
• 20. Managing Object Sizes –

– Calculating the estimated size of a 
database and its objects.

• 21. Recommending Object Placement
– Allocating databases and their objects 

on available hardware to achieve optimal 
performance.

13

Physical dB design goals
• improve system performance 

– reduce disk I/O 
– reduce joins 

• embed business rules into the 
database design
– through defaults, rules, constraints, 

stored procedures, or triggers
• make it understandable to users 

– use meaningful and indicative names for 
tables and columns

14

Defining Keys
• If there are more than one candidate 

key in a table, select the primary key 
as below: 
– select the key which transactions will 

know about most often. This will avoid 
additional lookups. 

– select the shortest length key when 
used in indexes 

– consider what other keys are available 
in other tables on which to join. 

15

Identify Critical Transactions
• To understand the transactions and 

performance requirements, you need 
to know: 
– types of transactions (select, insert, 

update, delete) 
– tables and column affected by each 

transaction 
– select criteria – fixed or variable (i.e. 

pre-defined queries or ad-hoc queries) 
– frequency and volume of each 

transaction 
16

Identify Critical Transactions
– how many rows (percentage) are 

typically affected (select or modified)
– size (no. of rows and total bytes) of 

tables involved 
– when the transaction is executed

• during the day or after office hours 
– relative importance of each transaction

• who use it, how often, how critical is it to 
the business process

– response time or throughput desired
–

17

Identify Critical 
Transactions

– security and integrity 
– how many tables will be joined 
– sort order

18



4/15/2020

4

Adding Redundant Columns
• required when an unaccepted number 

of joins is needed to perform a 
critical transaction. 

• add redundant columns in order to 
reduce the no. of joins. –
– It is a de-normalization process. Tables 

will not be in 3NF. 
• The concept of strong FD, weak FD, 

relax-replicated 3NF relation can be 
used as the theory for this process.

19

Adding Redundant Columns
• Benefits: 

– better response time 
– The chance to eliminate a foreign key –
– The reduction of lock contention; 

• this cut down blocking or deadlock 
situations.

20

Adding Derived Columns
• Derived data may include:

– column data aggregated with SQL 
aggregate function such as sum(), avg(), 
over N detail rows

– column data which is calculated using 
formulas over N rows.

– counts of details rows matching specific 
criteria

• Example: Total-sales in Titles table 
Titles (title-id, title, type, pub-id, price, 
total_sales, pubdate, pubname)

21

Collapsing Tables
• Required when the application 

program must frequently access data 
in multiple tables in a single query.
– e.g. Combining the publishers and Titles 

tables will improve the performance of 
the critical query 

• de-normalization
• similar to adding redundant columns
• in order to get better performance 

22

Splitting tables
• Required when it is more advantageous 

to access a subset of data.
• Vertical table splits: 

– e.g. Emp (Eno, name, salary, tax, mgr#, 
dept#) can be split to 2 tables: Emp_bio
(Eno, name, mgr#, dept#) Emp_comp
(Eno, salary, tax)

– The rows are smaller. This allows more 
rows to be stored on each data page, 
therefore no. of I/Os is reduced.

23

Splitting tables
• Horizontal table splits

– e.g. You can form horizontal fragments 
of the Supplier table. 

• Benefits of splitting:
• reduces the no. of index pages read in a 

query
• The table split corresponds to an actual 

physical separation of the data rows, as in 
different geographical sites.

• Table splitting achieves specific distribution 
of data on the available physical media

24



4/15/2020

5

Adding Tables for Derived Data
• Many applications or reports call for 

data summaries, often at more than 
one level of grouping for the same 
source data.

• generating summaries with large 
tables, may become a performance 
bottleneck.

• Example Summary table
– Titles (title-id, title, type, pub-id, price, 

pubdate) Summary-table (type, total-
sales) 25

Specifying Indexes
• Indexes can be used to improve data 

access performance
• Indexes may be clustered or non 

clustered, unique or non unique, or 
concatenated.

• A table’s indexes must be maintained 
with every insert, update, and delete 
operation performed on the table.

• Be careful not to over index. 

26

Specifying Indexes
• Incorrect index selection can 

adversely affect the performance.
• The greatest problem will be deriving 

the best set of indexes for the 
database when conflicting 
applications exist (i.e. applications 
whose access needs and priorities are 
in conflict).

27

Specifying Indexes
• Tables that should be considered as 

candidates for indexes are:
– tables that are used in critical 

transactions and that have a set of 
search criteria (or limit ranges)

– tables involved in multi-table joins
– tables with a large no. of rows
– tables that require enforcement of 

uniqueness

28

Specifying Indexes
• Identifying Columns for Indexes

– columns used to specify range in the where 
clause (clustered index)

– columns used to join one or more tables, 
usually primary and foreign keys

– columns likely to be used as search arguments
– columns used to match an equi-join query
– columns used in aggregate functions
– columns used in a group by clause
– columns used in an order by clause

29

Database tuning
• Database tuning is comprised of a group 

of activities used to optimize and 
regulate the performance of a 
database. 

• It refers to configuration of the 
database files, the database 
management system (DBMS), as well as 
the hardware and operating system on 
which the database is hosted. 

30



4/15/2020

6

Database tuning
• The goal of database tuning is to 

maximize the application of system 
resources in an attempt to execute 
transactions as efficiently and 
quickly as possible. 

• The large majority of DBMS are 
designed with efficiency in mind; 
however, it is possible to enhance a 
database’s performance via custom 
settings and configurations.

31

Database tuning
• The tuning of a database 

management system centers around 
the configuration of memory and the 
processing resources of the 
computer running the DBMS. 
– This can involve setting the recovery 

interval of the DMBS, establishing the 
level of concurrency control, and 
assigning which network protocols are 
used to communicate throughout the 
database. 

32

Database tuning
• Database performance can also be 

improved by using the cache to store 
execution procedures as they would 
not need to be recompiled with every 
transaction.

• By assigning processing resources to 
specific functions and activities, it is 
also possible to improve the 
concurrency of the system. 

33

Database tuning
• “Database concurrency controls 

ensure that transactions occur in an 
ordered fashion. 
– The main job of these controls is to 

protect transactions issued by different 
users/applications from the effects of 
each other. 

– They must preserve the four 
characteristics of database 
transactions: atomicity, isolation, 
consistency and durability”

34

Database tuning
• Input/Output(I/O) tuning is another 

major component of database tuning. 
– I/O tuning mainly deals with database 

transaction logs. 
– Database transaction logs are files that 

are associated with temporary work 
spaces as well as both table and index 
file storage. 

– Transaction logs and temporary spaces 
are heavy consumers of I/O, and affect 
performance for all users of the 
database. 35

Database tuning
– Placing them appropriately is crucial. 
– The main goal of I/O tuning a database 

is to optimize and balance the read and 
write transactions of the system in 
order to achieve an increased speed in 
database transactions and a decreased 
database access time.

36



4/15/2020

7

Database tuning
• Another method of ensuring that a 

database is fast and reliable is the 
Use of RAID in the creation of the 
database. 

• RAID stands for Redundant Array of 
Independent Disks. 

• Here is an example as to why RAID is 
superior to a single disk. 

37

Database tuning
– If data are stored on one disk, the 

entire database is completely reliant on 
that one disk; if it were to fail, the 
database would not exist anymore. 

– Another drawback to having it on a 
single disk is the read/write time. 

– One hard disk can only be so fast. If 
there is a lot of I/O data being 
processed, it can be a lengthy process. 
One thing that RAID does is it divides 
and replicates the data onto several 
independent disks.

38

Database tuning

This shows the data layout for a 
RAID-6 array.

39

Database tuning
• Another common part of database 

tuning revolves around maintenance. 
– Database maintenance includes things 

such as backing up the database as well as 
the defragmentation of the data residing 
within the database. 

– When a database is under heavy use, 
transaction log entries must be removed 
in order to create space for future 
entries. 

40

Questions

41


