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Physical Database Design
• It is the process of transforming a 

logical data model into a physical 
model of a database. 

• Unlike a logical design, a physical 
database design is optimized for 
data-access paths, performance 
requirements and other constraints 
of the target environment, i.e. 
hardware and software. 
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Physical Database Design
• Before you can begin the physical 

design, you must have: 
– (1) logical database design

• minimally third normal form 
– (2) Transaction characterization, such as 

• most frequent transactions 
• most complex or resource-insensitive 

transactions 
• distributions of transactions, over time 
• mix of insert, update, delete and select 

statements
• most critical transactions to the applications
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Physical Database Design
• (3) Performance requirements
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Physical dB design activities
• 1. Defining Tables and Columns –

– The initial transformation of the logical 
model into a physical model, including 
naming objects, choosing data types and 
lengths, and handling null values. 

• 2. Defining Keys –
– Choosing primary and foreign keys, 

including the use of surrogate keys. 
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Physical dB design activities
• 3. Identifying Critical Transactions –

– Identifying business transactions that 
are high-value, mission-critical, 
frequently performed, or costly in 
terms of computing resources.

• 4. Adding Redundant Columns –
– The first of a series of denormalization 

techniques: adding columns to tables 
that exist in other tables. 

6



4/15/2020

2

Physical dB design activities
• 5. Adding Derived Columns –

– Adding a column to a table based on the 
values or existence of values in other 
columns in any table. 

• 6. Collapsing Tables –
– Combining two or more tables into one 

table. 
• 7. Splitting Tables –

– Partitioning a table into two or more 
disjoint tables. Partitioning may be 
horizontal (row-wise) or vertical 
(column-wise) 7

Physical dB design activities
• 8. Handling Supertypes and Subtypes 

– Deciding how to implement tables that 
are involved in a supertype-subtype 
relationship in the logical model. 

• 9. Duplicating Parts of Tables –
– Duplicating data vertically and / or 

horizontally into new tables. 
• 10. Adding Tables for Derived Data –

– Creating new tables that hold data 
derived in columns from other tables
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Physical dB design activities
• 11. Handling Vector Data –

– Deciding how to implement tables that 
contain plural attributes or vector data. 
Row-wise and column-wise 
implementations are discussed. 

• 12. Generating Sequence Numbers –
– Choosing a strategy to generate 

sequence numbers, and the appropriate 
tables and columns to support the 
strategy.
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Physical dB design activities
• 13. Specifying Indexes –

– Specifying indexes to improve data 
access performance or to enforce 
uniqueness. 

• 14. Maintaining Row Uniqueness –
– Maintaining the uniqueness or 

primarykey values.
• 15. Handling Domain Restriction –

– Defining SQL Server rules and defaults 
on the columns of a table to maintain 
valid data values in columns.
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Physical dB design activities
• 16. Handling Referential Integrity –

– Deciding how to handle primary-key 
updates and deletes, and foreign-key 
inserts and updates. Using triggers to 
ensure referential integrity. 

• 17. Maintaining Derived and 
Redundant Data –
– Specifying how data integrity will be 

maintained if the data model contains 
derived or redundant data.
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Physical dB design activities
• 18. Handling Complex Integrity 

Constraints –
– Deciding how to handle complex business 

rules such as sequence rules, cross-
domain business rules, and complex data 
domain rules. Using triggers to 
implement complex business rules. 

• 19. Controlling Access to Data –
– Restricting access to commands and 

data. 
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Physical dB design activities
• 20. Managing Object Sizes –

– Calculating the estimated size of a 
database and its objects.

• 21. Recommending Object Placement
– Allocating databases and their objects 

on available hardware to achieve optimal 
performance.
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Physical dB design goals
• improve system performance 

– reduce disk I/O 
– reduce joins 

• embed business rules into the 
database design
– through defaults, rules, constraints, 

stored procedures, or triggers
• make it understandable to users 

– use meaningful and indicative names for 
tables and columns

14

Defining Keys
• If there are more than one candidate 

key in a table, select the primary key 
as below: 
– select the key which transactions will 

know about most often. This will avoid 
additional lookups. 

– select the shortest length key when 
used in indexes 

– consider what other keys are available 
in other tables on which to join. 
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Identify Critical Transactions
• To understand the transactions and 

performance requirements, you need 
to know: 
– types of transactions (select, insert, 

update, delete) 
– tables and column affected by each 

transaction 
– select criteria – fixed or variable (i.e. 

pre-defined queries or ad-hoc queries) 
– frequency and volume of each 

transaction 
16

Identify Critical Transactions
– how many rows (percentage) are 

typically affected (select or modified)
– size (no. of rows and total bytes) of 

tables involved 
– when the transaction is executed

• during the day or after office hours 
– relative importance of each transaction

• who use it, how often, how critical is it to 
the business process

– response time or throughput desired
–

17

Identify Critical 
Transactions

– security and integrity 
– how many tables will be joined 
– sort order
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Adding Redundant Columns
• required when an unaccepted number 

of joins is needed to perform a 
critical transaction. 

• add redundant columns in order to 
reduce the no. of joins. –
– It is a de-normalization process. Tables 

will not be in 3NF. 
• The concept of strong FD, weak FD, 

relax-replicated 3NF relation can be 
used as the theory for this process.
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Adding Redundant Columns
• Benefits: 

– better response time 
– The chance to eliminate a foreign key –
– The reduction of lock contention; 

• this cut down blocking or deadlock 
situations.
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Adding Derived Columns
• Derived data may include:

– column data aggregated with SQL 
aggregate function such as sum(), avg(), 
over N detail rows

– column data which is calculated using 
formulas over N rows.

– counts of details rows matching specific 
criteria

• Example: Total-sales in Titles table 
Titles (title-id, title, type, pub-id, price, 
total_sales, pubdate, pubname)
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Collapsing Tables
• Required when the application 

program must frequently access data 
in multiple tables in a single query.
– e.g. Combining the publishers and Titles 

tables will improve the performance of 
the critical query 

• de-normalization
• similar to adding redundant columns
• in order to get better performance 
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Splitting tables
• Required when it is more advantageous 

to access a subset of data.
• Vertical table splits: 

– e.g. Emp (Eno, name, salary, tax, mgr#, 
dept#) can be split to 2 tables: Emp_bio
(Eno, name, mgr#, dept#) Emp_comp
(Eno, salary, tax)

– The rows are smaller. This allows more 
rows to be stored on each data page, 
therefore no. of I/Os is reduced.
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Splitting tables
• Horizontal table splits

– e.g. You can form horizontal fragments 
of the Supplier table. 

• Benefits of splitting:
• reduces the no. of index pages read in a 

query
• The table split corresponds to an actual 

physical separation of the data rows, as in 
different geographical sites.

• Table splitting achieves specific distribution 
of data on the available physical media
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Adding Tables for Derived Data
• Many applications or reports call for 

data summaries, often at more than 
one level of grouping for the same 
source data.

• generating summaries with large 
tables, may become a performance 
bottleneck.

• Example Summary table
– Titles (title-id, title, type, pub-id, price, 

pubdate) Summary-table (type, total-
sales) 25

Specifying Indexes
• Indexes can be used to improve data 

access performance
• Indexes may be clustered or non 

clustered, unique or non unique, or 
concatenated.

• A table’s indexes must be maintained 
with every insert, update, and delete 
operation performed on the table.

• Be careful not to over index. 
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Specifying Indexes
• Incorrect index selection can 

adversely affect the performance.
• The greatest problem will be deriving 

the best set of indexes for the 
database when conflicting 
applications exist (i.e. applications 
whose access needs and priorities are 
in conflict).
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Specifying Indexes
• Tables that should be considered as 

candidates for indexes are:
– tables that are used in critical 

transactions and that have a set of 
search criteria (or limit ranges)

– tables involved in multi-table joins
– tables with a large no. of rows
– tables that require enforcement of 

uniqueness
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Specifying Indexes
• Identifying Columns for Indexes

– columns used to specify range in the where 
clause (clustered index)

– columns used to join one or more tables, 
usually primary and foreign keys

– columns likely to be used as search arguments
– columns used to match an equi-join query
– columns used in aggregate functions
– columns used in a group by clause
– columns used in an order by clause

29

Database tuning
• Database tuning is comprised of a group 

of activities used to optimize and 
regulate the performance of a 
database. 

• It refers to configuration of the 
database files, the database 
management system (DBMS), as well as 
the hardware and operating system on 
which the database is hosted. 
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Database tuning
• The goal of database tuning is to 

maximize the application of system 
resources in an attempt to execute 
transactions as efficiently and 
quickly as possible. 

• The large majority of DBMS are 
designed with efficiency in mind; 
however, it is possible to enhance a 
database’s performance via custom 
settings and configurations.
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Database tuning
• The tuning of a database 

management system centers around 
the configuration of memory and the 
processing resources of the 
computer running the DBMS. 
– This can involve setting the recovery 

interval of the DMBS, establishing the 
level of concurrency control, and 
assigning which network protocols are 
used to communicate throughout the 
database. 
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Database tuning
• Database performance can also be 

improved by using the cache to store 
execution procedures as they would 
not need to be recompiled with every 
transaction.

• By assigning processing resources to 
specific functions and activities, it is 
also possible to improve the 
concurrency of the system. 
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Database tuning
• “Database concurrency controls 

ensure that transactions occur in an 
ordered fashion. 
– The main job of these controls is to 

protect transactions issued by different 
users/applications from the effects of 
each other. 

– They must preserve the four 
characteristics of database 
transactions: atomicity, isolation, 
consistency and durability”
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Database tuning
• Input/Output(I/O) tuning is another 

major component of database tuning. 
– I/O tuning mainly deals with database 

transaction logs. 
– Database transaction logs are files that 

are associated with temporary work 
spaces as well as both table and index 
file storage. 

– Transaction logs and temporary spaces 
are heavy consumers of I/O, and affect 
performance for all users of the 
database. 35

Database tuning
– Placing them appropriately is crucial. 
– The main goal of I/O tuning a database 

is to optimize and balance the read and 
write transactions of the system in 
order to achieve an increased speed in 
database transactions and a decreased 
database access time.
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Database tuning
• Another method of ensuring that a 

database is fast and reliable is the 
Use of RAID in the creation of the 
database. 

• RAID stands for Redundant Array of 
Independent Disks. 

• Here is an example as to why RAID is 
superior to a single disk. 
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Database tuning
– If data are stored on one disk, the 

entire database is completely reliant on 
that one disk; if it were to fail, the 
database would not exist anymore. 

– Another drawback to having it on a 
single disk is the read/write time. 

– One hard disk can only be so fast. If 
there is a lot of I/O data being 
processed, it can be a lengthy process. 
One thing that RAID does is it divides 
and replicates the data onto several 
independent disks.
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Database tuning

This shows the data layout for a 
RAID-6 array.
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Database tuning
• Another common part of database 

tuning revolves around maintenance. 
– Database maintenance includes things 

such as backing up the database as well as 
the defragmentation of the data residing 
within the database. 

– When a database is under heavy use, 
transaction log entries must be removed 
in order to create space for future 
entries. 
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Questions
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