
4/17/2020

1

Transparencies in 
DDBs

Transparencies in 
DDBs

1

Introduction
• A DBMS should hide the details of 

where each data item(like tables and 
relation) is physically stored within 
system. this is known 
as "transparencies"

• different type of transparencies
– DISTRIBUTED TRANSPARENCY
– PERFORMANCE TRANSPARENCY
– DBMS TRANSPARENCY

Distributed Transparency
• This is further classified as

– fragmentation transparency
– network transparency
– replication transparency
– transaction transparency

• Data distribution considers the 
database distributed at multiple site 
as single entity.

• Distributed transparency refers to 
extend to which data distribution is 
hidden from users. 3

Fragmentation Transparency
• The process of decomposing the 

database into smaller multiple units is 
called fragments

• Fragments transparency make the 
user unaware of the fragmentation 
of which sites whether horizontal 
frag.or vertical frag.

• User access the data in normal form.

4

Network Transparency
• It means that a user must be 

unaware about the operational details 
of the network.

• when a user wants to access data and 
if that particular data does not exist 
on user computer then it is the 
responsibility of DBMS to provide 
the data from any other computer 
where it exists. 

• User does not know about this thing 
as from where data is coming.

5

Replication Transparency
• It ensures that replication of 

databases are hidden from the users. 
• It enables users to query upon a table 

as if only a single copy of the table 
exists.

• It is associated with concurrency 
transparency and failure transparency. 

• Whenever a user updates a data item, 
the update is reflected in all the 
copies of the table. 

6



4/17/2020

2

Replication Transparency
• However, this operation should not 

be known to the user. 
• This is concurrency transparency. 
• Also, in case of failure of a site, the 

user can still proceed with his 
queries using replicated copies 
without any knowledge of failure. 

• This is failure transparency.

7

Transaction Transparency
• Ensures that all distributed 

transactions maintain distributed 
database’s integrity and consistency

• Distributed transaction accesses data 
stored at more than one location. 

• Each transaction is divided into 
number of sub-transactions, one for 
each site that has to be accessed. • 
DDBMS must ensure the indivisibility 
of both the global transaction and 
each subtransactions.

8

Performance transparency
• It requires a DDBMS to perform as 

if it were a centralized DBMS. 
• In a distributed environment, the 

system should not suffer any 
performance degradation due to the 
distributed architecture, 
– for example the presence of the 

network Performance transparency also 
requires the DDBMS to determine the 
most cost-effective strategy to 
execute a request.

9

Performance transparency
• In a centralized DBMS, the query 

processor (QP) must evaluate every 
data request and find an optimal 
execution strategy, consisting of an 
ordered sequence of operations on 
the database. 

• In a distributed environment, the 
distributed query processor (DQP) 
maps a data request into an ordered 
sequence of operations on the local 
databases. 

10

Performance transparency
• It has the added complexity of 

taking into account the 
fragmentation, replication and 
allocation schemas. 

• The DQP has to decide:
– Which fragment to access?
– Which copy of fragment to use, if the 

fragment is replicated?
– Which location to use.

11

DBMS Transparency
• DBMS transparency hides the 

knowledge that the local DBMSs may 
be different, and is therefore only 
applicable to heterogeneous 
DDBMSs. 

• It is one of the most difficult 
transparencies to provide as a 
generalization.

12



4/17/2020

3

Distributed Transaction 
Management

Distributed Transaction 
Management

13

A transaction
• It is a program including a collection 

of database operations, executed as a 
logical unit of data processing. 

• The operations performed in a 
transaction include operations like 
insert, delete, update or retrieve data. 

• It is an atomic process that is either 
performed into completion entirely or 
is not performed at all. 

14

A transaction
• A transaction involving only data 

retrieval is called read-only transaction.
• Each high level operation can be divided 

into a number of low level tasks 
– For example, a data update operation can 

be divided into three tasks −
• read_item() − reads data item from storage to 

main memory.
• modify_item() − change value of item in the 

main memory.
• write_item() − write the modified value from 

main memory to storage.
15

A transaction
• Database access is restricted to 

read_item() and write_item() 
operations. 

• Likewise, for all transactions, read 
and write forms the basic database 
operations.

16

Transaction Operations
• The low level operations performed in 

a transaction are −
– begin_transaction − A marker that 

specifies start of transaction execution.
– read_item or write_item − Database 

operations that may be interleaved with 
main memory operations as a part of 
transaction.

– end_transaction − A marker that 
specifies end of transaction.

17

Transaction Operations
– commit − A signal to specify that the 

transaction has been successfully 
completed in its entirety and will not be 
undone.

– rollback − A signal to specify that the 
transaction has been unsuccessful and 
so all temporary changes in the 
database are undone. 
• A committed transaction cannot be rolled 

back.

18



4/17/2020

4

Transaction Operations
• The following state transition 

diagram depicts the states in the 
transaction and the low level 
transaction operations that causes 
change in states.

19

Transaction Operations

20

Properties of Transactions
• Any transaction must maintain the 

ACID properties, viz. Atomicity, 
Consistency, Isolation, and Durability.

• Atomicity − This property states 
that a transaction is an atomic unit 
of processing, that is, either it is 
performed in its entirety or not 
performed at all. 
– No partial update should exist.

21

Properties of Transactions
• Consistency − A transaction should 

take the database from one consistent 
state to another consistent state. 
– It should not adversely affect any data 

item in the database.
• Isolation − A transaction should be 

executed as if it is the only one in the 
system. 
– There should not be any interference 

from the other concurrent transactions 
that are simultaneously running.

22

Properties of Transactions
• Durability − If a committed 

transaction brings about a change, 
that change should be durable in the 
database and not lost in case of any 
failure.

23

Schedules and Conflicts
• In a system with a number of 

simultaneous transactions, 
a schedule is the total order of 
execution of operations. 
– Given a schedule S comprising of n 

transactions, say T1, T2, T3………..Tn; for 
any transaction Ti, the operations in Ti
must execute as laid down in the 
schedule S.

24



4/17/2020

5

Types of Schedules
• There are two types of schedules −

– Serial Schedules − In a serial schedule, 
at any point of time, only one 
transaction is active, i.e. there is no 
overlapping of transactions. 

– This is depicted in the following graph −

25

Serial Schedules

26

Types of Schedules
• Parallel Schedules − In parallel 

schedules, more than one 
transactions are active 
simultaneously, i.e. the transactions 
contain operations that overlap at 
time. 

• This is depicted in the following 
graph −

27

Parallel Schedules

28

Conflicts in Schedules
• In a schedule comprising of multiple 

transactions, a conflict occurs when 
two active transactions perform non-
compatible operations. 

• Two operations are said to be in 
conflict, when all of the following 
three conditions exists 
simultaneously −

29

Conflicts in Schedules
• The two operations are parts of 

different transactions.
• Both the operations access the same 

data item.
• At least one of the operations is a 

write_item() operation, i.e. it tries to 
modify the data item.

30



4/17/2020

6

Serializability
• A serializable schedule of ‘n’ 

transactions is a parallel schedule 
which is equivalent to a serial 
schedule comprising of the same ‘n’ 
transactions. 

• A serializable schedule contains the 
correctness of serial schedule while 
ascertaining better CPU utilization of 
parallel schedule

31

Equivalence of Schedules
• Equivalence of two schedules can be of 

the following types −
– Result equivalence − Two schedules 

producing identical results
– View equivalence − Two schedules that 

perform similar action in a similar manner.
– Conflict equivalence − Two schedules are 

said to be conflict equivalent if both 
contain the same set of transactions and 
has the same order of conflicting pairs of 
operations.

32

Distributed Concurrency 
Control

Distributed Concurrency 
Control

33

Concurrency Control
• Concurrency controlling techniques 

ensure that multiple transactions are 
executed simultaneously while 
maintaining the ACID properties of 
the transactions and serializability in 
the schedules.

34

Distributed Two-phase Locking
• The basic principle is same as the basic 

two-phase locking protocol. 
• However, in a distributed system there 

are sites designated as lock managers. 
– A lock manager controls lock acquisition 

requests from transaction monitors. 
– In order to enforce co-ordination between 

the lock managers in various sites, at least 
one site is given the authority to see all 
transactions and detect lock conflicts.

35

Distributed Two-phase Locking
• Depending upon the number of sites 

who can detect lock conflicts, 
distributed two-phase locking 
approaches can be of three types −
– Centralized two-phase locking − In this 

approach, one site is designated as the 
central lock manager. All the sites in the 
environment know the location of the 
central lock manager and obtain lock 
from it during transactions.

36



4/17/2020

7

Distributed Two-phase Locking
– Primary copy two-phase locking − In 

this approach, a number of sites are 
designated as lock control centers. 

– Each of these sites has the 
responsibility of managing a defined set 
of locks. 

– All the sites know which lock control 
center is responsible for managing lock 
of which data table/fragment item.

37

Distributed Two-phase 
Locking

– Distributed two-phase locking − In this 
approach, there are a number of lock 
managers, where each lock manager 
controls locks of data items stored at 
its local site. 

– The location of the lock manager is 
based upon data distribution and 
replication.

38

Distributed Timestamp
• In a centralized system, timestamp 

of any transaction is determined 
by the physical clock reading. 

• But, in a distributed system, any 
site’s local physical/logical clock 
readings cannot be used as global 
timestamps, since they are not 
globally unique. 

• So, a timestamp comprises of a 
combination of site ID and that 
site’s clock reading. 39

Distributed Timestamp
• For implementing timestamp ordering 

algorithms, each site has a scheduler 
that maintains a separate queue for 
each transaction manager. 

• During transaction, a transaction 
manager sends a lock request to the 
site’s scheduler. 

• The scheduler puts the request to 
the corresponding queue in increasing 
timestamp order. 

40

Distributed Timestamp
• Requests are processed from the 

front of the queues in the order of 
their timestamps, i.e. the oldest 
first.

41

Distributed Optimistic
• Distributed optimistic concurrency 

control algorithm extends optimistic 
concurrency control algorithm. 

• For this extension, two rules are 
applied 
– Rule 1 − According to this rule, a 

transaction must be validated locally at 
all sites when it executes. 

– If a transaction is found to be invalid at 
any site, it is aborted. 

42



4/17/2020

8

Distributed Optimistic
– Local validation guarantees that the 

transaction maintains serializability at the 
sites where it has been executed. 

– After a transaction passes local validation 
test, it is globally validated.

• Rule 2 − According to this rule, after a 
transaction passes local validation test, 
it should be globally validated. 
– Global validation ensures that if two 

conflicting transactions run together at 
more than one site, they should commit in 
the same relative order at all the sites 
they run together. 

43

Distributed Optimistic
• This may require a transaction to 

wait for the other conflicting 
transaction, after validation before 
commit. 

• This requirement makes the 
algorithm less optimistic since a 
transaction may not be able to 
commit as soon as it is validated at a 
site.

44

Questions

45


