
3/24/2014

1

PL/SQL

• PL/SQL stands for Procedural Language extension
of SQL.

• PL/SQL is a combination of SQL along with the
procedural features of programming languages.

• It was developed by Oracle Corporation in the
early 90’s to enhance the capabilities of SQL.

The PL/SQL Engine:

� Oracle uses a PL/SQL engine to processes the
PL/SQL statements.

� A PL/SQL code can be stored in the client system
(client-side) or in the database (server-side).

A PL/SQL Block:

� Each PL/SQL program consists of SQL and PL/SQL
statements

� which form a PL/SQL block.

� A PL/SQL Block consists of three sections:

� The Declaration section (optional).

� The Execution section (mandatory).

� The Exception (or Error) Handling section (optional).

Declaration Section

� The Declaration section of a PL/SQL Block starts
with the reserved keyword DECLARE.

� This section is optional and is used to declare any
placeholders like variables, constants, records and
cursors,

Declaration Section

� which are used to manipulate data in the execution
section.

� Placeholders may be any of Variables, Constants
and Records, which stores data temporarily.

� Cursors are also declared in this section.

Execution Section

• The Execution section of a PL/SQL Block starts with
the reserved keyword BEGIN and ends with END.

• This is a mandatory section and is the section where
the program logic is written to perform any task.

• The programmatic constructs like loops, conditional
statement and SQL statements form the part of
execution section.

3/24/2014

2

Exception Section

� The Exception section of a PL/SQL Block starts with
the reserved keyword EXCEPTION.

� This section is optional.

� Any errors in the program can be handled in this
section,

� so that the PL/SQL Blocks terminates gracefully.

Exception Section

• If the PL/SQL Block contains exceptions that cannot
be handled, the Block terminates abruptly with
errors.

• Every statement in the above three sections must
end with a semicolon ; .

• PL/SQL blocks can be nested within other PL/SQL
blocks.

• Comments can be used to document code.

PL/SQL Block

� This is how a sample PL/SQL Block looks.

DECLARE

Variable declaration

BEGIN

Program Execution

EXCEPTION

Exception handling

END;

PL/SQL Placeholders

� Placeholders are temporary storage areas.

� Placeholders can be any of Variables, Constants
and Records.

� Oracle defines placeholders to store data
temporarily,

� which are used to manipulate data during the
execution of a PL SQL block.

PL/SQL Placeholders

� Depending on the kind of data you want to store,

� you can define placeholders with a name and a
datatype.

� Few of the datatypes used to define placeholders
are as given below.

� Number (n,m) , Char (n) , Varchar2 (n) , Date , Long ,
Long raw, Raw, Blob, Clob, Nclob, Bfile

PL/SQL Variables

� These are placeholders that store the values that
can change through the PL/SQL Block.

� The General Syntax to declare a variable is:

� variable_name datatype [NOT NULL := value];

� variable_name is the name of the variable.

� datatype is a valid PL/SQL datatype.

3/24/2014

3

PL/SQL Variables

� NOT NULL is an optional specification on the
variable.

� value or DEFAULT value is also an optional
specification,

� where you can initialize a variable.

� Each variable declaration is a separate statement
and must be terminated by a semicolon.

PL/SQL Variables

• For example,

• if you want to store the current salary of an
employee,

• you can use a variable.

• DECLARE salary number (6);

• * “salary” is a variable of datatype number and
of length 6.

PL/SQL Variables

� When a variable is specified as NOT NULL,

� you must initialize the variable when it is declared.

� For example: The below example declares two
variables, one of which is a not null.

� DECLARE

� salary number(4);

� dept varchar2(10) NOT NULL := “HR Dept”;

PL/SQL Variables

� The value of a variable can change in the execution
or exception section of the PL/SQL Block.

� We can assign values to variables in two ways.

� We can directly assign values to variables.

� The General Syntax is:

� variable_name:= value;

PL/SQL Variables

� We can assign values to variables directly from the
database columns by using a SELECT.. INTO
statement.

� The General Syntax is:

� SELECT column_name INTO variable_name FROM
table_name [WHERE condition];

Example

� The below program will get the salary of an
employee with id '1116' and display it on the
screen.

� DECLARE

� var_salary number(6);

� var_emp_id number(6) = 1116;

� BEGIN SELECT salary INTO var_salary

� FROM employee

3/24/2014

4

Example

� WHERE emp_id = var_emp_id;

� dbms_output.put_line(var_salary);

� dbms_output.put_line('The employee ' ||
var_emp_id || ' has salary ' || var_salary); END;

Scope of Variables

� PL/SQL allows the nesting of Blocks within Blocks

� i.e, the Execution section of an outer block can
contain inner blocks.

� Therefore, a variable which is accessible to an outer
Block is also accessible to all nested inner Blocks.

Scope of Variables

� The variables declared in the inner blocks are not
accessible to outer blocks.

� Based on their declaration we can classify variables
into two types.

� Local variables - These are declared in a inner
block and cannot be referenced by outside Blocks.

Scope of Variables

� Global variables - These are declared in a outer
block and can be referenced by its itself and by its
inner blocks.

� For Example:

� creating two variables in the outer block and
assigning their product to the third variable created
in the inner block.

Scope of Variables

� 1> DECLARE

� 2> var_num1 number;

� 3> var_num2 number;

� 4> BEGIN

� 5> var_num1 := 100;

� 6> var_num2 := 200;

� 7> DECLARE

� 8> var_mult number;

� 9> BEGIN

� 10> var_mult := var_num1 * var_num2;

� 11> END; 12> END; 13> /

Scope of Variables

� The variable 'var_mult' is declared in the inner
block,

� so cannot be accessed in the outer block

� i.e. it cannot be accessed after line 11.

� The variables 'var_num1' and 'var_num2' can be
accessed anywhere in the block.

3/24/2014

5

PL/SQL Constants

� As the name implies a constant is a value used in a
PL/SQL Block that remains unchanged throughout
the program.

� A constant is a user-defined literal value.

� You can declare a constant and use it instead of
actual value.

PL/SQL Constants

� For example:

� If you want to write a program which will increase
the salary of the employees by 25%,

� you can declare a constant and use it throughout the
program.

� Next time when you want to increase the salary
again you can change the value of the constant
which will be easier than changing the actual value
throughout the program.

PL/SQL Constants

� The General Syntax to declare a constant is:

� constant_name CONSTANT datatype :=
VALUE;

� constant_name is the name of the constant i.e.
similar to a variable name.

PL/SQL Constants

� The word CONSTANT is a reserved word and
ensures that the value does not change.

� VALUE - It is a value which must be assigned to
a constant when it is declared.

� You cannot assign a value later.

� For example, to declare salary_increase, you
can write code as follows:

PL/SQL Constants

� DECLARE

� salary_increase CONSTANT number (3) := 10;

� You must assign a value to a constant at the time
you declare it.

� If you do not assign a value to a constant while
declaring it and try to assign a value in the
execution section, you will get a error.

PL/SQL Constants

� If you execute the below Pl/SQL block you will get
error.

� DECLARE

� salary_increase CONSTANT number(3);

� BEGIN

� salary_increase := 100;

� dbms_output.put_line (salary_increase);

� END;

3/24/2014

6

PL/SQL Records

� Records are another type of datatypes

� which oracle allows to be defined as a
placeholder.

� Records are composite datatypes,

� which means it is a combination of different
scalar datatypes like char, varchar, number
etc.

PL/SQL Records

� Each scalar data types in the record holds a
value.

� A record can be visualized as a row of data.

� It can contain all the contents of a row.

Declaring a record

� To declare a record,

� you must first define a composite datatype;

� then declare a record for that type.

� The General Syntax to define a composite
datatype is:

Declaring a record

� TYPE record_type_name IS RECORD
(first_col_name column_datatype,
second_col_name column_datatype, ...);

� record_type_name – it is the name of the
composite type you want to define.

Declaring a record

� first_col_name, second_col_name, etc.,

� - it is the names of the fields/columns within the
record.

� column_datatype defines the scalar datatype
of the fields.

Declaring a record

� There are different ways you can declare the
datatype of the fields.

� 1) You can declare the field in the same way
you declare the fields when creating a table.

� 2) If a field is based on a column from
database table, you can define the field_type
as follows:

� col_name table_name.column_name%type;

3/24/2014

7

Declaring a record

� By declaring the field datatype in the above
method,

� the datatype of the column is dynamically
applied to the field.

� This method is useful when you are altering the
column specification of the table, because you
do not need to change the code again.

� NOTE: You can use also %type to declare
variables and constants.

Declaring a record

� The General Syntax to declare a record of a user-
defined datatype is:

� record_name record_type_name;

� The following code shows how to declare a record
called employee_rec based on a user-defined type

Declaring a record

� DECLARE

� TYPE employee_type IS RECORD

� (employee_id number(5),

� employee_first_name varchar2(25),

� employee_last_name employee.last_name%type,

� employee_dept employee.dept%type);

� employee_salary employee.salary%type;

� employee_rec employee_type;

Declaring a record

� If all the fields of a record are based on the
columns of a table,

� we can declare the record as follows:

� record_name table_name%ROWTYPE;

� For example, the above declaration of
employee_rec can be as follows:

� DECLARE employee_rec employee%ROWTYPE;

Declaring a record

� The advantages of declaring the record as a
ROWTYPE are:

� You do not need to explicitly declare variables
for all the columns in a table.

� If you alter the column specification in the
database table, you do not need to update
the code.

Declaring a record

� The disadvantage of declaring the record as a
ROWTYPE is:

� When u create a record as a ROWTYPE, fields will
be created for all the columns in the table and
memory will be used to create the datatype for all
the fields.

� So use ROWTYPE only when you are using all the
columns of the table in the program.

3/24/2014

8

Declaring a record

� NOTE: When you are creating a record,

� you are just creating a datatype,

� similar to creating a variable.

� You need to assign values to the record to use
them.

� The following table consolidates the different
ways in which you can define and declare a
pl/sql record

Declaring a record

Syntax

Usage

TYPE record_type_name IS RECORD

(column_name1 datatype,

column_name2 datatype, ...);

Define a composite datatype, where

each field is scalar.

col_name

table_name.column_name%type;

Dynamically define the datatype of a

column based on a database column.

record_name record_type_name; Declare a record based on a user-

defined type.

record_name

table_name%ROWTYPE;

Dynamically declare a record based on

an entire row of a table. Each column

in the table corresponds to a field in the

record.

Passing Values To and From a Record

� When you assign values to a record,

� you actually assign values to the fields within it.

� The General Syntax to assign a value to a column
within a record direclty is:

� record_name.col_name := value;

Passing Values To and From a Record

� If you used %ROWTYPE to declare a record,
you can assign values as shown:
� record_name.column_name := value;

� We can assign values to records using SELECT
Statements as shown:

Passing Values To and From a Record

� SELECT col1, col2

� INTO record_name.col_name1,
record_name.col_name2 FROM table_name [WHERE
clause];

� If %ROWTYPE is used to declare a record then you
can directly assign values to the whole record
instead of each columns separately.

Passing Values To and From a Record

� In this case, you must SELECT all the columns from
the table into the record as shown:

� SELECT *

� INTO record_name

� FROM table_name

� [WHERE clause];

3/24/2014

9

Passing Values To and From a Record

� The General Syntax to retrieve a value from a
specific field into another variable is:

� var_name := record_name.col_name;

� The following table consolidates the different ways
you can assign values to and from a record:

Passing Values To and From a Record

Syntax Usage

record_name.col_name := value; To directly assign a value to a specific

column of a record.

record_name.column_name := value; To directly assign a value to a specific

column of a record, if the record is

declared using %ROWTYPE.

SELECT col1, col2 INTO

record_name.col_name1,

record_name.col_name2 FROM

table_name [WHERE clause];

To assign values to each field of a

record from the database table.

SELECT * INTO record_name FROM

table_name [WHERE clause];

To assign a value to all fields in the

record from a database table.

variable_name :=

record_name.col_name;

To get a value from a record column

and assigning it to a variable.

PL/SQL function

� PL/SQL function is a named block that returns a
value.

� PL/SQL functions are also known as subroutines or
subprograms.

� To create a PL/SQL function, you use the following
syntax

� CREATE [OR REPLACE] FUNCTION {function_name} [(

� {parameter_1} [IN] [OUT] {parameter_data_type_1},

� {parameter_2} [IN] [OUT] {parameter_data_type_2},...

� {parameter_N} [IN] [OUT] {parameter_data_type_N})]

� RETURN {return_datatype} IS

� --the declaration statements

� BEGIN

� -- the executable statements

� RETURN {return_data_type};

� EXCEPTION

� -- the exception-handling statements

� END;

PL/SQL function

� The {function_name} is the name of the function.

� Function name should start with a verb for example function
convert_to_number.

� {parameter_name} is the name of parameter being passed
to function along with parameter’s data type
{parameter_data_type}.

� There are three modes for parameters: IN,OUT and IN OUT.

PL/SQL function

� The IN mode is the default mode.

� You use the IN mode when you want the formal
parameter is read-only.

� It means you cannot alter its value in the function.

� The IN parameter behaves like a constant inside the
function.

� You can assign default value to the IN parameter or
make it optional.

3/24/2014

10

PL/SQL function

� The OUT parameters return values to the caller of a
subprogram.

� An OUT parameter cannot be assigned a default value
therefore you cannot make it optional.

� You need to assign values to the OUT parameter before
exiting the function or its value will be NULL.

� From the caller subprogram, you must pass a variable to the
OUT parameter.

PL/SQL function

� In the IN OUT mode, the actual parameter is passed
to the function with initial values.

� And then inside the function, the new value is set for
the IN OUT parameter and returned to the caller.

� The actual parameter must be a variable.

PL/SQL function

� The function must have at least one RETURN statement in the
execution part.

� The RETURN clause in the function header specifies the data
type of returned value.

� The block structure of a function is the same as an PL/SQL
block except for the addition CREATE [OR REPLACE]
FUNCTION, the parameters section, and a RETURN clause.

Examples of PL/SQL Function

� We are going to create a function that parses a
string and returns a number if the string being
passed is a number otherwise it returns NULL.

� CREATE OR REPLACE FUNCTION try_parse(

� iv_number IN VARCHAR2)

� RETURN NUMBER IS

� BEGIN

� RETURN TO_NUMBER(iv_number);

� EXCEPTION

� WHEN OTHERS THEN

� RETURN NULL;

� END;

PL/SQL function

� The input parameter is iv_number that is a varchar2
type.

� We can pass any string to the function try_parse().

� We use built-in function to_number to convert a
string into a number.

� If any exception occurs, the function will return NULL
in the exception section of the function block.

3/24/2014

11

� SET SERVEROUTPUT ON SIZE 1000000;

� DECLARE

� n_x NUMBER;

� n_y NUMBER;

� n_z NUMBER;

� BEGIN

� n_x := try_parse('574');

� n_y := try_parse('12.21');

� n_z := try_parse('abcd');

� DBMS_OUTPUT.PUT_LINE(n_x);

� DBMS_OUTPUT.PUT_LINE(n_y);

� DBMS_OUTPUT.PUT_LINE(n_z);

� END;

� /

PL/SQL procedure

� Like a PL/SQL function, a PL/SQL procedure is a
named block that performs one or more actions.

� PL/SQL procedure allows you to wrap complex
business logic and reuse it.

� The following illustrates the PL/SQL procedure’s
syntax:

� We can divide the PL/SQL procedure into two
sections: header and body.

� PL/SQL Procedure’s Header

� The section before the keyword IS is called
procedures’ header or procedure’s signature.

� The elements in the procedure’s header are listed as
follows:

� Schema:

� The optional name of the schema that own this
procedure.

� The default is the current user.

� If you specify a different user, the current user must
have privileges to create a procedure in that schema.

� Name:

� The name of the procedure.

� The name of the procedure like a function should be
always meaningful and starting by a verb.

3/24/2014

12

� Parameters:

� The optional list of parameters.

� Refer to the PL/SQL function for more information on
parameter with different modes IN, OUT and IN OUT.

� AUTHID:

� The optional AUHTID determines whether the procedure
will execute with the privileges of the owner (DEFINER)
of the procedure or the current user (CURRENT_USER).

PL/SQL Procedure’s Body

� Everything after the keyword IS is known as
procedure’s body.

� The procedure’s body consists of declaration,
execution and exception sections.

� The declaration and exception sections are optional.

� You must have at least one executable statement in
the execution section.

� In PL/SQL procedure you still have RETURN
statement.

� However unlike the RETURN statement in function
that returns a value to calling program,

� RETURN statement in procedure is used only to halt
the execution of procedure and return control to the
caller.

� RETURN statement in procedure does not take any
expression or constant.

Example of PL/SQL Procedures

� We’re going to develop a procedure called
adjust_salary().

� We’ll update the salary information of employees
in the table employees by using SQL UPDATE
statement.

� Here is the PL/SQL procedure adjust_salary() code
sample:

3/24/2014

13

� There are two parameters of the procedure
IN_EMPLOYEE_ID and IN_PERCENT.

� This procedure will update salary information by a
given percentage (IN_PERCENT) for a given
employee specified by IN_EMPLOYEE_ID.

� In the procedure’s body, we use SQL UPDATE
statement to update salary information.

� Let’s take a look how to call this procedure.

Calling PL/SQL Procedures

� A procedure can call other procedures.

� A procedure without parameters can be called
directly by using keyword EXEC or EXECUTE
followed by procedure’s name as below:

� EXEC procedure_name();

� EXEC procedure_name;

� Procedure with parameters can be called by using
keyword EXEC or EXECUTE followed by
procedure’s name and parameter list in the order
corresponding to the parameters list in
procedure’s signature.

� EXEC procedure_name(param1,param2…paramN);

Conditional Statements in PL/SQL

� PL/SQL supports programming language
features like conditional statements, iterative
statements.

� The programming constructs are similar to how
you use in programming languages like Java
and C++.

PL/SQL IF Statement

� The PL/SQL IF statement allows you to execute a
sequence of statements conditionally.

� The IF statements evaluate a condition.

� The condition can be anything that evaluates to a
logical true or false

� such as comparison expression or combination of
multiple comparison expressions.

3/24/2014

14

PL/SQL IF Statement

� You can compare two variables of the same type
or different types but they are convertible to each
other.

� You can compare two literals.

� In addition, a Boolean variable can be used as a
condition.

� The PL/SQL IF statement has three forms:

� IF-THEN, IF-THEN-ELSE and IF-THEN-ELSIF

PL/SQL IF-THEN Statement

� The following is the syntax of the IF-THEN
statement:

� IF condition THEN

� sequence_of_statements;

� END IF;

PL/SQL IF-THEN Statement

� If the condition evaluates to true, the sequence
of statements will execute.

� If the condition is false or NULL,

� the IF statement does nothing.

� Note that END IF is used to close the IF
statement, not ENDIF.

PL/SQL IF-THEN Statement

PL/SQL IF-THEN Statement PL/SQL IF-THEN Statement

3/24/2014

15

PL/SQL IF-THEN Statement PL/SQL IF-THEN-ELSE Statement

� This is the second form of the IF statement.

� The ELSE keyword is added with the alternative
sequence of statements.

� Below is the syntax of the IF-ELSE statement.

PL/SQL IF-THEN-ELSE Statement

� IF condition THEN

� sequence_of_if_statements;

� ELSE

� sequence_of_else_statements;

� END IF;

� If the condition is NULL or false, the sequence of
else statements will execute.

PL/SQL IF-THEN-ELSE Statement

PL/SQL IF-THEN-ELSIF Statement

� PL/SQL supports IF-THEN-ELSIF statement to allow
you to execute a sequence of statements based on
multiple conditions.

� The syntax of PL/SQL IF-THEN-ELSIF is as follows:

PL/SQL IF-THEN-ELSIF Statement

� IF condition1 THEN

� sequence_of_statements1

� ELSIF condition2 THEN

� sequence_of_statements2

� ELSE

� sequence_of_statements3

� END IF;

3/24/2014

16

PL/SQL IF-THEN-ELSIF Statement

� Note that an IF statement can have any number of
ELSIF clauses.

� IF the first condition is false or NULL, the ELSIF
clause checks second condition and so on.

� If all conditions are NULL or false, the sequence of
statements in the ELSE clause will execute.

PL/SQL IF-THEN-ELSIF Statement

� Note that the final ELSE clause is optional so you
can omit it.

� If any condition from top to bottom is true, the
corresponding sequence of statements will execute.

PL/SQL IF-THEN-ELSIF Statement PL/SQL IF-THEN-ELSIF Statement

PL/SQL IF-THEN-ELSIF Statement PL/SQL FOR Loop

� PL/SQL FOR loop is an iterative statement that
allows you to execute a sequence of statements a
fixed number of times.

� Unlike the PL/SQL WHILE loop, the number of
iterations of the PL/SQL FOR loop is known before
the loop starts.

� The following illustrates the PL/SQL FOR loop
statement syntax:

3/24/2014

17

PL/SQL FOR Loop

� FOR loop_counter IN [REVERSE] lower_bound ..
higher_bound

� LOOP

� sequence_of_statements;

� END LOOP;

PL/SQL FOR Loop

� SET SERVEROUTPUT ON SIZE 1000000;

� DECLARE

� n_times NUMBER := 10;

� BEGIN

� FOR n_i IN 1..n_times LOOP

� DBMS_OUTPUT.PUT_LINE(n_i);

� END LOOP;

� END;

� /

PL/SQL FOR Loop

� SET SERVEROUTPUT ON SIZE 1000000;

� DECLARE

� n_times NUMBER := 10;

� BEGIN

� FOR n_i IN REVERSE 1..n_times LOOP

� DBMS_OUTPUT.PUT_LINE(n_i);

� END LOOP;

� END;

PL/SQL WHILE Loop

� If you don’t know in advance how many times to
execute a sequence of statements because the
execution depends on a condition that is not fixed.

� In such cases, you should use PL/SQL WHILE loop
statement.

� The following illustrates the PL/SQL WHILE LOOP
syntax:

PL/SQL WHILE Loop

� WHILE condition

� LOOP

� sequence_of_statements;

� END LOOP;

PL/SQL CASE Statement

� The PL/SQL CASE statement allows you to execute
a sequence of statements based on a selector.

� A selector can be anything such as variable,
function, or expression that the CASE statement
evaluates to a Boolean value.

� You can use almost any PL/SQL data types as a
selector except BLOB, BFILE and composite types.

� syntax:

3/24/2014

18

� Unlike the PL/SQL IF statement, PL/SQL CASE
statement uses a selector instead of combination of
multiple Boolean expressions.

� The following illustrates the PL/SQL CASE statement

� Followed by the keyword CASE is a selector.

� The PL/SQL CASE statement evaluates the selector
only once to decide which sequence of statements
to execute.

� Followed by the selector is any number of the
WHEN clause.

� If the selector value is equal to expression in the
WHEN clause,

� the corresponding sequence of statement after the
THEN keyword will be executed.

� If the selector’s value is not one of the choices
covered by WHEN clause,

� the sequence of statements in the ELSE clause is
executed.

� The ELSE clause is optional so if you omit the ESLE
clause, PL/SQL will add the following implicit ELSE
clause:
� ELSE RAISE CASE_NOT_FOUND;

� The keywords END CASE are used to terminate the
CASE statement.

Example of Using PL/SQL CASE
Statement

� The following code snippet demonstrates the
PL/SQL CASE statement. We’ll use table employees

for demonstration

3/24/2014

19

PL/SQL LOOP Statement

� PL/SQL LOOP is an iterative control structure that
allows you to execute a sequence of statements
repeatedly.

� The simplest of LOOP consists of

� the LOOP keyword,

� the sequence of statements and

� the END LOOP keywords

� Note that there must be at least one executable
statement between LOOP and END LOOP
keywords.

� The sequence of statements is executed repeatedly
until it reaches a loop exits.

� PL/SQL provides you EXIT and EXIT-WHEN
statements to allow you to terminate a loop.

� The EXIT forces the loop halt execution
unconditionally and passes control to the next
statement after keyword END LOOP.

� The EXIT-WHEN statement allows the loop complete
conditionally.

� When the EXIT-WHEN statement is reached, the
condition in the WHEN clause is checked.

� If the condition is true, the loop is terminated and
pass control to the next statement after keyword
END LOOP.

� If condition is false, the loop will continue
repeatedly until the condition is evaluated to true.

� Therefore if you don’t want to have a infinite loop
you must change variable’s value inside loop to
make condition true.

3/24/2014

20

� The following illustrates PL/SQL LOOP with EXIT
and EXIT-WHEN statements:

Example of PL/SQL LOOP with EXIT
Statement

� In this example, we declare a counter. Inside the
loop we add 1 to the counter and print it out.

� If the counter is 5, we use EXIT statement to
terminate the loop.

� Below is the code example of PL/SQL LOOP
statement with EXIT:

Example of PL/SQL LOOP with EXIT-
WHEN Statement

� We’ll use the same counter example above.
However instead of using the IF-THEN and EXIT
statements,

� we use EXIT-WHEN to terminate the loop.

� The code example is as follows:

