
3/24/2014

1

Dimension Tables

� A dimension is a structure, often composed of one or 

more hierarchies, that categorizes data. 

� Dimensional attributes help to describe the 

dimensional value. 

� They are normally descriptive, textual values. 

Dimension Tables

� Several distinct dimensions, combined with facts, 

enable you to answer business questions. 

� Commonly used dimensions are customers, products, 

and time.

Dimension Tables

� Dimension data is typically collected at the lowest 

level of detail and then aggregated into higher 
level totals that are more useful for analysis. 

� These natural rollups or aggregations within a 
dimension table are called hierarchies.

Hierarchies

� Hierarchies are logical structures that use ordered 

levels as a means of organizing data. 

� A hierarchy can be used to define data 

aggregation. 

� For example, in a time dimension, a hierarchy might 
aggregate data from the month level to the quarter 

level to the year level. 

Hierarchies

� A hierarchy can also be used to define a 

navigational drill path and to establish a family 
structure.

� Within a hierarchy, each level is logically connected 
to the levels above and below it.

� Data values at lower levels aggregate into the data 

values at higher levels. 

Hierarchies

� A dimension can be composed of more than one 

hierarchy. 

� For example, in the product dimension, there might 

be two hierarchies--one for product categories and 
one for product suppliers.



3/24/2014

2

Hierarchies

� Dimension hierarchies also group levels from 

general to granular. 

� Query tools use hierarchies to enable you to drill 

down into your data to view different levels of 
granularity. 

� This is one of the key benefits of a data warehouse.

Hierarchies

� When designing hierarchies, you must consider the 

relationships in business structures. 

� For example, a divisional multilevel sales 

organization.

� Hierarchies impose a family structure on dimension 
values. 

Hierarchies

� For a particular level value, a value at the next 

higher level is its parent, and values at the next 
lower level are its children. 

� These familial relationships enable analysts to 
access data quickly.

Level Relationships

� Level relationships specify top-to-bottom ordering 

of levels from most general (the root) to most 
specific information. 

� They define the parent-child relationship between 
the levels in a hierarchy.

Level Relationships

� Hierarchies are also essential components in 

enabling more complex rewrites. 

� For example, the database can aggregate an 

existing sales revenue on a quarterly base to a 
yearly aggregation when the dimensional 
dependencies between quarter and year are 

known.

Typical Levels in a Dimension Hierarchy



3/24/2014

3

Unique Identifiers

� Unique identifiers are specified for one distinct 

record in a dimension table. 

� Artificial unique identifiers are often used to avoid 

the potential problem of unique identifiers 
changing. 

� Unique identifiers are represented with the # 

character. 

� For example, #customer_id.

Relationships

� Relationships guarantee business integrity. 

� An example is that if a business sells something, 

� there is obviously a customer and a product.

� Designing a relationship between the sales 

information in the fact table and 

� the dimension tables products and customers 

enforces the business rules in databases.

Example of Data Warehousing 

Objects and Their Relationships

� Figure below illustrates a common example of a 

sales fact table and dimension tables customers, 
products, promotions, times, and channels.

Typical Data Warehousing Objects

Physical Design in Data Warehouses

� The following will be discussed

� Moving from Logical to Physical Design 

� Physical Design 

Moving from Logical to Physical 

Design

� Logical design is what you draw with a pen and 

paper or design with Oracle Warehouse Builder or 
Designer before building your warehouse. 

� Physical design is the creation of the database with 
SQL statements.



3/24/2014

4

Moving from Logical to Physical 

Design

� During the physical design process, you convert the 

data gathered during the logical design phase into 
a description of the physical database structure. 

� Physical design decisions are mainly driven by 
query performance and database maintenance 
aspects. 

Physical Design

� During the logical design phase, you defined a 

model for your data warehouse consisting of 
entities, attributes, and relationships. 

� The entities are linked together using relationships. 

� Attributes are used to describe the entities.

� The unique identifier (UID) distinguishes between 

one instance of an entity and another.

Physical Design

� Figure below offers a graphical way of looking at 

the different ways of thinking about logical and 
physical designs.

Logical Design Compared with Physical 
Design

Logical Design Compared with Physical 
Design

� During the physical design process, 

� you translate the expected schemas into actual 
database structures. 

� At this time, you have to map:

Logical Design Compared with Physical 
Design

� Entities to tables 

� Relationships to foreign key constraints 

� Attributes to columns 

� Primary unique identifiers to primary key constraints 

� Unique identifiers to unique key constraints 



3/24/2014

5

Physical Design Structures

� Once you have converted your logical design to a 
physical one, 

� you will need to create some or all of the following 
structures:

� Tablespaces 

� Tables and Partitioned Tables 

� Views 

� Integrity Constraints 

� Dimensions 

Physical Design Structures

� Some of these structures require disk space.

� Others exist only in the data dictionary.

� Additionally, the following structures may be 

created for performance improvement:

� Indexes and Partitioned Indexes 

� Materialized Views 

Tablespaces

� A tablespace consists of one or more datafiles, 

� which are physical structures within the operating 
system you are using. 

� A datafile is associated with only one tablespace. 

� From a design perspective, tablespaces are 
containers for physical design structures.

Physical Design Structures

� Tablespaces need to be separated by differences. 

� For example, tables should be separated from their 
indexes and

� small tables should be separated from large tables. 

Physical Design Structures

� Tablespaces should also represent logical business 

units if possible.

� Because a tablespace is the coarsest granularity for 

backup and

� recovery or the transportable tablespaces 
mechanism, 

� the logical business design affects availability and 
maintenance operations.

Tables and Partitioned Tables

� Tables are the basic unit of data storage. 

� They are the container for the expected amount of 
raw data in your data warehouse.

� Using partitioned tables instead of nonpartitioned 
ones addresses the key problem of supporting very 
large data volumes 



3/24/2014

6

Physical Design Structures

� by allowing you to decompose them into smaller 

and more manageable pieces.

� The main design criterion for partitioning is 

manageability, 

� though you will also see performance benefits in 
most cases because of partition pruning or 

intelligent parallel processing. 

Physical Design Structures

� For example, you might choose a partitioning 

strategy based on a sales transaction date and a 
monthly granularity. 

� If you have four years' worth of data, you can 
delete a month's data as it becomes older than four 
years with a single, quick DDL statement and 

� load new data while only affecting 1/48th of the 
complete table. 

Physical Design Structures

� Business questions regarding the last quarter will 

only affect three months, which is equivalent to 
three partitions, or 3/48ths of the total volume.

� Partitioning large tables improves performance 
because each partitioned piece is more 
manageable. 

Physical Design Structures

� Typically, you partition based on transaction dates 

in a data warehouse. 

� For example, each month, one month's worth of 

data can be assigned its own partition.

Data Segment Compression

� You can save disk space by compressing heap-

organized tables. 

� A typical type of heap-organized table you should 

consider for data segment compression is 
partitioned tables.

� To reduce disk use and memory use (specifically, the 

buffer cache),

Data Segment Compression

� you can store tables and partitioned tables in a 

compressed format inside the database. 

� This often leads to a better scaleup for read-only 

operations. 

� Data segment compression can also speed up query 
execution. 



3/24/2014

7

Data Segment Compression

� There is, however, a cost in CPU overhead.

� Data segment compression should be used with 
highly redundant data,

� such as tables with many foreign keys. 

� You should avoid compressing tables with much 
update or other DML activity. 

Data Segment Compression

� Although compressed tables or partitions are 

updatable, 

� there is some overhead in updating these tables, 

and 

� high update activity may work against compression 
by causing some space to be wasted.

Views

� A view is a tailored presentation of the data 

contained in one or more tables or other views. 

� A view takes the output of a query and treats it as 

a table. 

� Views do not require any space in the database.

Integrity Constraints

� Integrity constraints are used to enforce business 

rules associated with your database and to prevent 
having invalid information in the tables. 

� Integrity constraints in data warehousing differ from 
constraints in OLTP environments. 

Integrity Constraints

� In OLTP environments, they primarily prevent the 

insertion of invalid data into a record, 

� which is not a big problem in data warehousing 

environments because accuracy has already been 
guaranteed. 

Integrity Constraints

� In data warehousing environments, constraints are 

only used for query rewrite. 

� NOT NULL constraints are particularly common in 

data warehouses.

� Under some specific circumstances, constraints need 
space in the database. 

� These constraints are in the form of the underlying 
unique index.



3/24/2014

8

Indexes and Partitioned Indexes

� Indexes are optional structures associated with 

tables or clusters. 

� In addition to the classical B-tree indexes, bitmap 

indexes are very common in data warehousing 
environments.

� Bitmap indexes are optimized index structures for 

set-oriented operations. 

� Additionally, they are necessary for some optimized 

data access methods such as star transformations.

� Indexes are just like tables in that you can partition 

them,

� although the partitioning strategy is not dependent 

upon the table structure. 

� Partitioning indexes makes it easier to manage the 

warehouse during refresh and improves query 
performance.

Materialized Views

� Materialized views are query results that have been 

stored in advance 

� so long-running calculations are not necessary when 

you actually execute your SQL statements. 

� From a physical design point of view,

� materialized views resemble tables or partitioned 

tables and behave like indexes.


