

- Introduction to SQL
- Basic structure of SQL commands
- Data Definition
- Data Manipulation
- Aggregation

Introduction to SQL

 SQL is a transform-oriented language with two major components. These are the DDL for defining the database structure and the DML for retrieving and updating data.

Introduction to SQL

 SQL does not contain flow control commands. These must be implemented using a programming or job-control language, or interactively by the decisions of the user.

Introduction to SQL

- SQL is relatively easy to learn. SQL is a nonprocedural language,
- you specify what information you require, rather than how to get it.

Introduction to SQL

- An ISO standard now exists for SQL, making it both the formal and de facto standard language for relational databases.
- The most popular and widely implemented is referred to as SQL2 or SQL/92.

Basic structure of SQL commands

- SQL statement consists of reserved words and user-defined words.
- Reserved words are a fixed part of SQL and must be spelt exactly as required and cannot be split across lines.
- User-defined words are made up by user and represent names of various database objects such as relations, columns and views.

Basic structure of SQL commands

- Most components of an SQL statement are case insensitive
- SQL statements are more readable with indentation and lineation.

Data Manipulation

 A query in SQL can consist of up to six clauses, but only the first two are mandatory.

SELECT [DISTINCT | ALL]
{* | [column_expression [AS new_name]] [,...] }

Data Manipulation

FROM table_name [alias] [, ...]
[WHERE condition]
[GROUP BY column_list]
[HAVING condition]
[ORDER BY column_list]

Data Manipulation CONT:

- SELECT specifies which columns are to appear in output.
- FROM specifies table(s) to be used.
- WHERE filters rows.

Data Manipulation CONT:

- GROUP BY forms groups of rows with same column value.
- HAVING filters groups subject to some condition.
- ORDER BY specifies the order of the output.

MANIPULATION EXAMPLES

Specific Columns, Specific Rows.

- Find the salaries of employees named Brown.
- SELECT Salary as Remuneration FROM Employee
 WHERE Surname = 'Brown';

MANIPULATION EXAMPLES

All Columns, Specific Rows.

- Find all the information relating to employees named Brown.
- SELECT *
 FROM Employee
 WHERE Surname = 'BROWN';

MANIPULATION EXAMPLES

Attribute expressions (calculated field)

- Find the monthly salary of the employees named White.
- SELECT Salary / 12 as MonthlySalary
 FROM Employee
 WHERE Surname = 'White';

MANIPULATION EXAMPLES

- Simple join query
 - Find the names of the employees and the cities in which they work.
- SELECT Employee.FirstName, Employee.Surname, Department.City FROM Employee, Department
 WHERE Employee.Dept = Department.DeptName;

MANIPULATION EXAMPLES

- Using predicate disjunction
 - Find the first names and surnames of the employees who work in either the Administration or the Production department.
- SELECT FirstName, Surname
 FROM Employee
 WHERE Dept = 'Administration' OR
 Dept = 'Production';

MANIPULATION EXAMPLES

- Using complex logical expression
 - Find the first names of the employees named Brown who work in the Administration department or the Production department.
- SELECT FirstName
 FROM Employee
 WHERE Surname = 'Brown' AND
 (Dept = 'Administration' OR Dept = 'Production');

MANIPULATION EXAMPLES

- Using the parten match serach condition(like/not like)
 - Find the employees with surnames that have 'r' as the second letter and end in 'n'.
- SELECT *
 FROM Employee
 WHERE Surname LIKE '_r%n';

MANIPULATION EXAMPLES

- Null search condition
 - List the details of all viewings on property PG4 where a comment has not been supplied
- SELECT viewing.pno, viewing.rno, Date FROM viewing
 WHERE pno='PG4' AND comment IS NULL;

MANIPULATION EXAMPLES

- Q11: Sorting results
 - Produce an abbreviated list of properties arranged in order of property type.
- SELECT Pno, Type, Rooms, Rent FROM Property ORDER BY Type;

MANIPULATION EXAMPLES

- Comparison search condition
 - List all staff with a salary greater than 10,000.
- SELECT Staff.Sno, Staff.Fname, Staff.Lname, Position, Salary FROM Staff WHERE Salary > 10000;

MANIPULATION EXAMPLES

- Range search condition
 - List all staff with a salary between 20,000 and 30,000.
- SELECT staff.Sno, staff.FName, staff.LName, staff.Position, staff.Salary FROM staff
 WHERE staff.Salary BETWEEN 20000

MANIPULATION EXAMPLES

- Set membership search condition
 - List all Managers and Deputy Managers.
- SELECT staff.Sno, staff.FName, staff.LName, staff.Position
 FROM staff
 WHERE position in ('Manager', 'Deputy');

Aggregation

AND 30000;

- ISO standard defines five aggregate functions. These are:
 - COUNT returns number of values in a specified column.
 - SUM returns sum of values in a specified column.

Aggregation

- AVG returns average of values in a specified column.
- MIN returns smallest value in a specified column.
- MAX returns largest value in a specified column.

Aggregation examples

- Q16: The Count function
 - How many properties cost more than £350 per month for rent?
- SELECT Count(*) AS count FROM property
 WHERE property.Rent > 350;

Aggregation examples

- The Max, Min and Avg function
 - Find the minimum, maximum and average staff salary.
- SELECT MIN(salary) AS MIN, MAX(salary) AS MAX, AVG(salary) AS AVG
 FROM staff;

Aggregation examples

- Using the Group By clause
 - Find the number of staff working in each branch and the total of their salaries.
- SELECT bno, COUNT(sno) AS count, SUM(salary) AS sum
 FROM staff
 GROUP BY bno
 ORDER BY bno;

Aggregation examples

- Using predicates on grouping results
 - For each branch office with more than one member of staff, find the number of staff working in each branch and the sum of their salaries.

Aggregation examples

 SELECT bno, COUNT(sno) AS count, SUM(salary) AS sum
 FROM staff
 GROUP BY bno
 HAVING COUNT(SNO) > 1;

Multiple Grouping Columns

- Find number of properties handled by each staff member.
- SELECT s.branchNo, s.staffNo, COUNT(*) AS count

FROM Staff s, PropertyForRent p WHERE s.staffNo = p.staffNo GROUP BY s.branchNo, s.staffNo ORDER BY s.branchNo, s.staffNo;

