
8/19/2014

1

The Relational The Relational
AlgebraAlgebra

The Relational The Relational
AlgebraAlgebra

Relational Algebra
• Relational algebra is the basic set of

operations for the relational model

• These operations enable a user to
specify basic retrieval requests (or
queries)

Relational Algebra Overview
• Relational Algebra consists of several

groups of operations
– Unary Relational Operations

• SELECT (symbol: σσσσ (sigma))
• PROJECT (symbol: ππππ (pi))
• RENAME (symbol: ρρρρ (rho))

Relational Algebra Overview
– Relational Algebra Operations
From Set Theory
•UNION (∪∪∪∪),
• INTERSECTION (∩∩∩∩),
• DIFFERENCE (or MINUS, –)
• CARTESIAN PRODUCT (x)

Relational Algebra Overview
– Binary Relational Operations

• JOIN (several variations of
JOIN exist)

• DIVISION
– Additional Relational Operations

•OUTER JOINS, OUTER UNION
•AGGREGATE FUNCTIONS

Unary Relational Operations

• SELECT (symbol: σσσσ (sigma))

• PROJECT (symbol: ππππ (pi))

• RENAME (symbol: ρρρρ (rho))

8/19/2014

2

Database State for COMPANY
• All examples discussed below refer

to the COMPANY database shown
here.

SELECT
• The SELECT operation (denoted by σσσσ

(sigma)) is used to select a subset of the
tuples from a relation based on a
selection condition
– The selection condition acts as a filter
– Keeps only those tuples that satisfy
the qualifying condition

– Tuples satisfying the condition are
selected whereas the other tuples are
discarded (filtered out)

SELECT

• Examples:
– Select the EMPLOYEE tuples whose

department number is 4:

σσσσ DNO = 4 (EMPLOYEE)

– Select the employee tuples whose salary
is greater than K30,000:

σσσσ SALARY > 30,000 (EMPLOYEE)

SELECT

– In general, the select operation is denoted

by σσσσ <selection condition>(R) where
• the symbol σσσσ (sigma) is used to denote the select

operator

• the selection condition is a Boolean (conditional)
expression specified on the attributes of relation
R

• tuples that make the condition true are selected

• tuples that make the condition false are filtered
out

SELECT
• The Boolean expression specified in

<selection condition> is made up of a number
of clauses of the form:
<attribute name> <comparison op> <constant value>

or
<attribute name> <comparison op> <attribute
name>

Where <attribute name> is the name of an attribute
of R, <comparison op> is normally one of the
operations {=,>,>=,<,<=,!=}

Clauses can be arbitrarily connected by the Boolean
operators and, or and not

8/19/2014

3

SELECT

• For example, to select the tuples for
all employees who either work in
department 4 and make over K25,000
per year, or work in department 5
and make over K30,000, the select
operation should be:

σσσσ (DNO=4 AND Salary>25000) OR (DNO=5 AND

Salary>30000) (EMPLOYEE)

SELECT
• SELECT Operation Properties

– SELECT σ is commutative:
σ<condition1>(σ < condition2> (R)) = σ <condition2>
(σ < condition1> (R))

– A cascade of SELECT operations may
be replaced by a single selection with
a conjunction of all the conditions:

σ<cond1>(σ< cond2> (σ<cond3>(R)) = σ <cond1> AND <

cond2> AND < cond3>(R)

PROJECT
• PROJECT Operation is denoted by ππππ

(pi)

• If we are interested in only certain
attributes of relation, we use
PROJECT

• This operation keeps certain columns
(attributes) from a relation and
discards the other columns.

PROJECT
� PROJECT creates a vertical
partitioning

�The list of specified columns
(attributes) is kept in each tuple

�The other attributes in each tuple are
discarded

PROJECT
• Example: To list each employee’s

first and last name and salary, the
following is used:

πLNAME, FNAME,SALARY(EMPLOYEE)

Duplicate elimination
� If the attribute list includes only

non-key attributes, duplicate tuples
are likely to occur

� The PROJECT operation removes any
duplicate tuples

8/19/2014

4

Single expression versus
sequence of relational

operations
• We may want to apply several

relational algebra operations one
after the other

– Either we can write the operations
as a single relational algebra
expression by nesting the
operations, or

Single expression versus
sequence of relational

operations
– We can apply one operation at a
time and create intermediate
result relations.

In the latter case, we must give
names to the relations that hold
the intermediate results.

Single expression versus
sequence of relational

operations
• To retrieve the first name, last name,

and salary of all employees who work in
department number 5.

• We can write a single relational algebra
expression as follows:

� ππππFNAME, LNAME, SALARY(σσσσ

DNO=5(EMPLOYEE))

Single expression versus
sequence of relational

operations
• OR We can explicitly show the

sequence of operations, giving a name
to each intermediate relation:

– DEP5_EMPS ← σσσσ DNO=5(EMPLOYEE)

– RESULT ← ππππ FNAME, LNAME, SALARY

(DEP5_EMPS)

Relational Algebra Operations
from Set Theory

• Union

• Intersection

• Minus

• Cartesian Product

UNION
• It is a Binary operation, denoted by ∪

– The result of R ∪ S, is a relation
that includes all tuples that are
either in R or in S or in both R and S

– Duplicate tuples are eliminated

8/19/2014

5

UNION
– The two operand relations R and S
must be “type compatible” (or
UNION compatible)

• R and S must have same number
of attributes

• Each pair of corresponding
attributes must be type
compatible (have same or
compatible domains)

UNION
• Example:

– To retrieve the social security
numbers of all employees who
either work in department 5
(RESULT1 below) or directly
supervise an employee who works in
department 5 (RESULT2 below)

UNION
DEP5_EMPS ← σDNO=5 (EMPLOYEE)
RESULT1 ← π SSN(DEP5_EMPS)
RESULT2 ← πSUPERSSN(DEP5_EMPS)
RESULT ← RESULT1 ∪ RESULT2

• The union operation produces the tuples
that are in either RESULT1 or RESULT2
or both

The following query results
refer to this database

state

Example of the result of a
UNION operation

• UNION Example

INTERSECTION
• INTERSECTION is denoted by ∩
• The result of the operation R ∩ S, is a

relation that includes all tuples that
are in both R and S
– The attribute names in the result will
be the same as the attribute names
in R

• The two operand relations R and S
must be “type compatible”

8/19/2014

6

SET DIFFERENCE
• SET DIFFERENCE (also called MINUS or

EXCEPT) is denoted by –
• The result of R – S, is a relation that

includes all tuples that are in R but
not in S
– The attribute names in the result
will be the same as the attribute
names in R

• The two operand relations R and S
must be “type compatible”

Example to illustrate the result of
UNION, INTERSECT, and

DIFFERENCE

Some properties of
UNION, INTERSECT, and

DIFFERENCE
• Notice that both union and

intersection are commutative
operations; that is

– R ∪ S = S ∪ R, and R ∩ S = S ∩ R

Some properties of
UNION, INTERSECT, and

DIFFERENCE
• Both union and intersection are

associative operations; that is

– R ∪ (S ∪ T) = (R ∪ S) ∪ T

– (R ∩ S) ∩ T = R ∩ (S ∩ T)

• The minus operation is not
commutative; that is, in general

– R – S ≠ S – R

CARTESIAN PRODUCT
• CARTESIAN PRODUCT Operation

– This operation is used to combine
tuples from two relations in a
combinatorial fashion.

– Denoted by R(A1, A2, . . ., An) x
S(B1, B2, . . ., Bm)

– Result is a relation Q with degree n
+ m attributes:
•Q(A1, A2, . . ., An, B1, B2, . . .,
Bm), in that order.

CARTESIAN PRODUCT
– The resulting relation state has
one tuple for each combination of
tuples—one from R and one from S.

– Hence, if R has nR tuples (denoted
as |R| = nR), and S has nS tuples,
then R x S will have nR * nS tuples.

– The two operands do NOT have to
be "type compatible”

8/19/2014

7

CARTESIAN PRODUCT
• Generally, CROSS PRODUCT is not a

meaningful operation
– Can become meaningful when followed by

other operations

• Example (not meaningful):
– FEMALE_EMPS ← σσσσ SEX=’F’(EMPLOYEE)
– EMPNAMES ← ππππ FNAME, LNAME, SSN

(FEMALE_EMPS)
– EMP_DEPENDENTS ← EMPNAMES x

DEPENDENT

CARTESIAN PRODUCT example
Example of applying

CARTESIAN PRODUCT
• To keep only combinations where the

DEPENDENT is related to the
EMPLOYEE, we add a SELECT
operation as follows

• Add:

ACTUAL_DEPS ← σσσσ

SSN=ESSN(EMP_DEPENDENTS)

RESULT ← ππππ FNAME, LNAME, DEPENDENT_NAME

(ACTUAL_DEPS)

Binary Relational
Operations

• Join

• Division

JOIN
• JOIN Operation (denoted by)

– The sequence of CARTESIAN
PRODECT followed by SELECT is
used quite commonly to identify
and select related tuples from two
relations

– This operation is very important
for any relational database with
more than a single relation,
because it allows us combine
related tuples from various
relations

8/19/2014

8

JOIN
– The general form of a join
operation on two relations R(A1,
A2, . . ., An) and S(B1, B2, . . ., Bm)
is:

R <join condition>S

– where R and S can be any relations
that result from general relational
algebra expressions.

JOIN
• Example: Suppose that we want to

retrieve the name of the manager of
each department.

• To get the manager’s name, we need to
combine each DEPARTMENT tuple with
the EMPLOYEE tuple whose SSN value
matches the MGRSSN value in the
department tuple.

• DEPT_MGR ← DEPARTMENT
MGRSSN=SSN EMPLOYEE

Example of applying the
JOIN operation

DEPT_MGR ← DEPARTMENT MGRSSN=SSN EMPLOYEE

JOIN
• The general case of JOIN operation

is called a Theta-join: R theta S
• The join condition is called theta
• Theta can be any general boolean

expression on the attributes of R and
S; for example:

– R.Ai<S.Bj AND (R.Ak=S.Bl OR
R.Ap<S.Bq)

EQUIJOIN
• The most common use of join involves

join conditions with equality
comparisons only

• Such a join, where the only
comparison operator used is =, is
called an EQUIJOIN

• The JOIN seen in the previous
example was an EQUIJOIN

8/19/2014

9

NATURAL JOIN
• Another variation of JOIN called

NATURAL JOIN — denoted by *

– It was created to get rid of the
second (superfluous) attribute in
an EQUIJOIN condition.

NATURAL JOIN
• Another example: Q ← R(A,B,C,D) *

S(C,D,E)
– The implicit join condition includes
each pair of attributes with the
same name, “AND”ed together:
• R.C=S.C AND R.D = S.D

– Result keeps only one attribute of
each such pair:
•Q(A,B,C,D,E)

NATURAL JOIN

• Example: To apply a natural join on the
DNUMBER attributes of DEPARTMENT
and DEPT_LOCATIONS, it is sufficient
to write:
– DEPT_LOCS ← DEPARTMENT *
DEPT_LOCATIONS

NATURAL JOIN
• Only attribute with the same name is

DNUMBER

• An implicit join condition is created
based on this attribute:

DEPARTMENT.DNUMBER=DEPT_LO
CATIONS.DNUMBER

NATURAL JOIN example

8/19/2014

10

Complete Set of Relational
Operations

• The set of operations including SELECT σ,
PROJECT π , UNION ∪, DIFFERENCE − ,
RENAME ρ, and CARTESIAN PRODUCT X
is called a complete set because any other
relational algebra expression can be
expressed by a combination of these five
operations.

• For example:

– R ∩ S = (R ∪ S) – ((R − S) ∪ (S − R))

– R <join condition>S = σ <join condition> (R X S)

Aggregate Functions and
Grouping

• Common functions applied to
collections of numeric values include
– SUM, AVERAGE, MAXIMUM, and

MINIMUM.

• The COUNT function is used for
counting tuples or values.

Aggregate Functions and
Grouping

• Use of the Aggregate Functional operation Ʒ
– Ʒ MAX Salary (EMPLOYEE) retrieves the maximum salary

value from the EMPLOYEE relation

– Ʒ MIN Salary (EMPLOYEE) retrieves the minimum Salary
value from the EMPLOYEE relation

Aggregate Functions and
Grouping

–Ʒ SUM Salary (EMPLOYEE) retrieves
the sum of the Salary from the
EMPLOYEE relation

– Ʒ COUNT SSN, AVERAGE Salary
(EMPLOYEE) computes the count
(number) of employees and their
average salary

Aggregate Functions and
Grouping

• Grouping can be combined with
Aggregate Functions

• Example: For each department,
retrieve the DNO, COUNT SSN, and
AVERAGE SALARY

Aggregate Functions and
Grouping

• A variation of aggregate operation Ʒ
allows this:
– Grouping attribute placed to left
of symbol

– Aggregate functions to right of
symbol

– DNO Ʒ COUNT SSN, AVERAGE Salary
(EMPLOYEE)

8/19/2014

11

Illustrating aggregate
functions and grouping

Questions

