Relational Database Basics Review

- Overview
- Database approach
- Database system
- Relational model

File Processing Approaches

- Based on file systems
 - Data are recorded in various types of files organized in folders (directories)
- File types
 - Sequential data files
 - Name-value pair files
 - Spreadsheets or list files
 - XML files

Files Processing Problems

- Difficult to handle complex data
- Low data quality: redundancy and inconsistency
- No central management
- Difficult to maintain and share in multi-user environments

Files Processing Problems

- Limited security
- Not scalable: cannot handle large quantity of data efficiently
- Lack of specialized and standardized data management and processing capabilities

Database Approach

- Database is a structured and selfdescribing collection of data
- Structured: structures and rules are consistently and rigorously defined and enforced (integrity)
- Self-describing: the description of data (data definition, or metadata) is contained within the database

Database Approach

- Centralized management
- Managed and controlled by specialized programs, called database management systems (DBMS),
- which provides rich data management functionalities

Advantages of Databases

- High data quality, integrity, and consistency
- Reduced data redundancy and application maintenance
- Easy access and sharing
- Scalable
- Improved security
- Specialized and productive management tool

Major disadvantages

- Increased complexity
- Greater impact of failure

Database System • A database system is a complete information system · Basic layers of a database system Forms Reports Database Tables Queries **Managemen** Relationships pplication System Metadata **Database Application** User **DBMS** Database

Database

- A database is a storage place for data
- What's in the database?
 - Data (tables)
 - Metadata
 - Other data and structures

User data

- Metadata
- Indexes and other overhead data
- Application metadata

Metadata

- Metadata are data that describe data (data definitions)
- Metadata is always a part of a database.

Database Management System

- DBMS serves as a controller (gatekeeper) for databases
- DBMS provides common functionalities and interfaces for managing and controlling database activities, such as
- creating and maintaining databases and other structures

Database Management System

- reading, updating and deleting data
- data backup and recovery
- controlling concurrency, consistency, and enforcing other rules
- providing security

Database application B

C# code

Database

Application B

C# code

Database

Application B

C# code

Oracle (Oracle)

DB2 (IBM)

SOL Server (Microsoft)

MySQL (MySQL AB)

Others

Introduction to Relational Databases

- The relational approach was originally proposed in 1970's .
- The first project that proved the practicality of the relational model is System R, developed at IBM's San Jose Research Laboratory in 1976. examples oracle, Sybase, access

Introduction to Relational

Databases cont:

- The model was proposed as a disciplined way of handling data using the rigour of mathematics, particularly set theory.
- This would enhance the concept of programdata independence
- and improve programmer activities.

Introduction to Relational Databases cont:

- The relational model will have only values.
- Even references between data in different sets (relations) are represented by means of values.
- In the hierarchical and network model there are explicit references (pointers), which make them more complicated.

Relational Data structure

- The Relational approach is based on elementary mathematical relation theory.
- Its basic construct is a relation. A relation is also called a table.
- The data is organized in tables. The table has columns and rows.

Relational Model Terminology

- A relation is a table with columns and rows.
 - Only applies to logical structure of the database, not the physical structure.
- Attribute is a named column of a relation.
- Domain is the set of allowable values for one or more attributes.

19

Relational Model Terminology Cont:

- Tuple is a row of a relation.
- Degree is the number of attributes in a relation.
- Cardinality is the number of tuples in a relation.
- Relational Database is a collection of normalized relations with distinct relation names.

20

Examples of Attribute Domains Domain Definition Attribute Domain Name Meaning branchNo BranchNumbers The set of all possible branch numbers | character: size 4, range B001-B999 StreetNames The set of all street names in Britain character: size 25 street city CityNames The set of all city names in Britain character: size 15 The set of all postcodes in Britain postcode Postcodes character: size 8 The sex of a person sex Sex character: size 1, value M or F DatesOfBirth Possible values of staff birth dates DOB date, range from 1-Jan-20, format dd-mmm-yy Salaries Possible values of staff salaries monetary: 7 digits, range salary

Alternative Terminology for Relational Model

 $\label{terms.eqn} \textbf{Table 3.1} \quad \text{Alternative terminology for relational model terms.}$

Formal terms	Alternative 1	Alternative 2
Relation	Table	File
Tuple Attribute	Row Column	Record Field

Properties of Relations

- Relation name is distinct from all other relation names in relational schema.
- Each cell of relation contains exactly one atomic (single) value.
- Each attribute has a distinct name.
- Values of an attribute are all from the same domain.

Properties of Relations

- Each tuple is distinct; there are no duplicate tuples.
- Order of attributes has no significance.
- Order of tuples has no significance, theoretically.

25

Relational keys

- A key is one or more columns of a relation that is used to uniquely identify a record
- Primary key
- Candidate key
- Alternate key
- Surrogate key
- Composite key
- Foreign key

Candidate Key

- The minimum set of column(s) that uniquely identifies a single record (row)
- Each value in this column is unique in this relation

7

Primary Key

- Primary key is a column/attribute that is used to uniquely identify a record
- Is one of the candidate keys chosen to be the identifying key; others become alternate keys
- Each value of this key column uniquely identifies a single record (row)
- There is only ONE primary key for a table

28

Composite Key

- A composite key contains two or more attributes (columns)
- Example:
- "FirstName" + "LastName"
- "FirstName" + "LastName" + "BirthDate"
- "FirstName" + "LastName" + "BirthDate" + "BirthCity"

29

Artificial Primary Key/Surrogate Key

- Sometimes it is difficult to find a natural attribute as a primary key, or it is difficult to use a composite key.
- A column is created arbitrarily and assign each record a unique number/id
- Product Number, Product Id, Movie Id, Actor Id, etc.

PK Selection Guidelines

- Do not use a field whose value is frequently changed as PK
- Look for single-attribute PK first
- If a PK contains more than 3 columns, consider a surrogate key
- Don't be limited to sample data; think beyond and consider possible scenarios and requirements

Relationship and Foreign Key (FK)

- Relationship is how tables (relations) are linked
- It is defined by the foreign key (FK) constraint
- A foreign key references a primary key (or any other unique keys) in another table
- This pair of keys are of the same kind (may be of different name)

