Functional

Dependencies

Functional Dependency

- Functional dependency describes the relationship between attributes in a relation.
- Eg. if A and B are attributes of relation R, B is functionally dependent on A (denoted $A \rightarrow B$), if each value of A in R is associated with exactly one value of B in R.

FD Diagram

Stock

P\#	P-desc.	Qty-in-stock
P2	nut	5000
P1	bolt	8300
P3	washer	9750
P4	nut	2326

(P\#, P-desc, Qty-in-stock)
$\mathrm{P} \# \rightarrow$ \{P-desc, Qty-in-stock\}

Definition

- Let U_{j} be a subset of the universal set of attributes u.
- A functional dependencies (fd) is a constraint of U_{j} of the form $\mathrm{X} \rightarrow \mathrm{Y}$ where $\mathrm{X}, Y \subseteq U_{j}$.
- Relation $R\left(U_{j}\right)$ satisfies $F D X \rightarrow Y$ or $X \rightarrow Y$ holds in $R\left(U_{j}\right)$ if for every two tuples in $R\left(U_{j}\right)$, say t 1 and t 2 , we have:
- if $\mathrm{t} 1[\mathrm{X}]=\mathrm{t} 2[\mathrm{X}]=>\mathrm{t} 2[\mathrm{Y}]=\mathrm{t} 1[\mathrm{Y}]$

Definition

- if two, tuples agree on the ' X ' attribute, they *must* agree on the ' Y ' attribute, too
- If $X \rightarrow Y$ we say X functionally determines Y .
- Notice that $\mathrm{X} \rightarrow \mathrm{Y}$ implies many-to-one or one-to-one mapping.

Example

- Consider the Emp schema below:
- EMP (name, salary, dept, mgr)

Example

- Some employees may work in more than one department
- name - \longrightarrow dept
- e1[name] = e2[name] but
- e1[dept] \neq e2[dept]

Inference Axioms

- (A-axioms or Armstrong's Axioms)
- An inference axiom is a rule that states
- if a relation satisfies certain FDs then it must satisfy certain other FDs.

Inference Axioms

- The closure of F (usually written as $\boldsymbol{F +}$) is the set of all functional dependencies that may be logically derived from F.
- Often F is the set of most obvious and important functional dependencies and
- $\boldsymbol{F t}$, the closure, is the set of all the functional dependencies including F and those that can be deduced from F.

Inference Axioms

- The closure is important and may, for example, be needed in finding one or more candidate keys of the relation.
- A set of inference rules, called Armstrong's axioms, specifies how new functional dependencies can be inferred from given ones.

Armstrong's axioms

Let A, B, and C be subsets of the attributes of the relation R. Armstrong's F axioms are as follows:
(F1) Reflexivity
If B is a subset of A, then $A \rightarrow B$
(F2) Augmentation
If $A \rightarrow B$, then $A, C \rightarrow B, C$
(F3) Transitivity
${ }_{13}$ If $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{C}$, then $\mathrm{A} \rightarrow \mathrm{C}$

Armstrong's axioms

-Further rules can be derived from the first three rules that simplify the practical task of computing $\mathrm{X}+$.

- Let D be another subset of the attributes of relation R , then:
(F4) Self-determination $A \rightarrow A$
(F5) Decomposition
If $A \rightarrow B, C$, then $A \rightarrow B$ and $A \rightarrow C$

Examples of the use of Armstrong's Axioms

- Consider R = (Street, Zip, City) ;
- F $=\{$ City Street \longrightarrow Zip, Zip \longrightarrow City $\}$
- Show that : Street Zip \longrightarrow Street Zip City

Proof:

1. Zip \longrightarrow City - Given
2. Street Zip \longrightarrow Street City - Augmentation of (1) by Street
3. City Street \longrightarrow Zip - Given
4. City Street \longrightarrow City Street Zip

- Augmentation of (3) by City Street

5. Street Zip \longrightarrow City Street Zip

- Transitivity of (2) and (4)

Example 2

- Let $\mathrm{R}=$ (ABCDEGHI)
- $\mathrm{F}=\{\mathrm{AB} \longrightarrow \mathrm{E}, \mathrm{AG} \longrightarrow \mathrm{J}, \mathrm{BE} \longrightarrow \mathrm{I}, \mathrm{E} \longrightarrow \mathrm{G}$ $\mathrm{GI} \longrightarrow \mathrm{H}\}$
- Show that $A B \rightarrow G H$ is derived by F

Proof

$$
\begin{aligned}
& A B \longrightarrow E-\text { Given } \\
& A B \longrightarrow A B-\text { Reflexivity } \\
& A B \longrightarrow B-\text { Projectivity from (2) } \\
& A B \longrightarrow B E-\text { Union from (1) and (3) } \\
& B E \longrightarrow I-\text { Given } \\
& A B \longrightarrow I-\text { Transitivity from (4) and (5) }
\end{aligned}
$$

Proof Cont:

```
\(\mathrm{E} \rightarrow \mathrm{G}\) - Given
\(\mathrm{AB} \rightarrow \mathrm{G}\) - Transitivity from (1) and (7)
\(\mathrm{AB} \rightarrow \mathrm{GI}\) - Union from (6) and (8)
\(\mathrm{GI} \longrightarrow \mathrm{H}\) - Given
\(A B \rightarrow H\) - Transitivity from (9) and (10)
\(A B \rightarrow G H\) - Union from (8) and (11)
```


B-Axioms

- Definition: Set of inference axioms which are not a subset of F1 to F7.
- Let $r(R)$ with WXY and Z be subsets of R, and C an attribute in R then:
B1. Reflexivity $-X \rightarrow X$
B2. Accumulation - If $(\mathrm{X} \rightarrow \mathrm{YZ}$) and $(Z \rightarrow \mathrm{CW})$ then $\mathrm{X} \rightarrow \mathrm{YZC}$
B3. Projectivity - If $(X \rightarrow Y Z)$ then $X \longrightarrow Y$

Example

- Let $R=(A B C D E G H I) F=\{A B \longrightarrow E$, $\mathrm{AG} \rightarrow \mathrm{J}, \mathrm{BE} \longrightarrow \mathrm{I}, \mathrm{E} \rightarrow \mathrm{G}, \mathrm{GI} \longrightarrow \mathrm{H}\}$
- Show $\mathrm{F} \mid=\mathrm{AB} \longrightarrow \mathrm{GH}$ using only B -axioms

Example

- EI \rightarrow EI - Reflexivity (B1)
- $\mathrm{E} \rightarrow \mathrm{G}$ - Given
- EI \rightarrow EIG - Accumulation (B2)
- EI \rightarrow GI - Projectivity (B3) from (3)
- GI $\rightarrow \mathrm{H}$ - Given

Example

- EI $\rightarrow \mathrm{GHI}$ - Accumulation from (4) and (5)
- EI $\rightarrow \mathrm{GH}$ - Projectivity from (6)
- $A B \rightarrow A B$ - Reflexivity
- $A B \rightarrow E$ - Given
- $\mathrm{AB} \rightarrow \mathrm{ABE}$ - Accumulation from (8) and (9)
- $\mathrm{BE} \rightarrow \mathrm{I}$ - Given

Example

- $\mathrm{AB} \rightarrow \mathrm{ABEI}$ - Accumulation from (10) and (11)
- $A B \rightarrow$ ABEIG - Accumulation from (4) and (12)
- AB \rightarrow ABEGHI - Accumulation from (7) and (13)
- $\mathrm{AB} \rightarrow \mathrm{GH}$ - Projectivity from (14)
- Therefore we have found a derivation sequence for $\mathrm{AB} \rightarrow \mathrm{GH}$ using only the B -axioms

RAP - Derivation Sequence

RAP: Reflexivity, Augmentation, Projectivity

- Definition: Consider derivation sequences for $X \longrightarrow Y$ on a set F of f.d.s using the B axioms that satisfy the following constraints:
- The first f.d. is $X \longrightarrow Y$
- The last f.d. is $X \longrightarrow Y$

RAP - Derivation Sequence

- Every FD other than the first and last is either an f.d. in F (given) or and f.d. of the form $X \longrightarrow Z$ that was derived using

RAP - Derivation Sequence

- Such a derivation is called a RAP-derivation sequence, for the order in which the axioms are used.

Example:

- Let $R=(A B C D E G H I) F=\{A B \longrightarrow E$
$\mathrm{AG} \longrightarrow \mathrm{JE} \longrightarrow \mathrm{I}, \mathrm{E} \longrightarrow \mathrm{G}, \mathrm{GI} \longrightarrow \mathrm{H}\}$
- Find a RAP-sequence for $A B \longrightarrow G H$

Example:

- $A B \rightarrow A B(B 1)$
- $\mathrm{AB} \rightarrow \mathrm{E}$ - Given *
- $A B \rightarrow A B E$ (B2)
- $\mathrm{BE} \rightarrow \mathrm{I}$ - Given *
- $\mathrm{AB} \rightarrow \mathrm{ABEI}$ (B2)

Example:

- $\mathrm{E} \rightarrow \mathrm{G}$ - Given *
- $\mathrm{AB} \rightarrow \mathrm{ABEIG}$ (B2)
- GI $\rightarrow \mathrm{H}$ - Given *
- $\mathrm{AB} \rightarrow \mathrm{ABIGH}$ (B2)
- $\mathrm{AB} \rightarrow \mathrm{GH}$ (B3)

Covers for Functional Dependencies

- If every set of FDs, F can be inferred from another set of FDs, G, then G is said to cover F .
- A/so E is covered by F if every FD in E is also in F^{+}
- E and F are equivalent if $E^{+}=F^{+}$, i.e, E covers F and F covers E .

Minimal Cover for a set of FDs

- It is always useful to identify a simplified set of $F D s, G_{c}$, that is equivalent to F.
- This means that they have the same closure ($\mathrm{F}+$) as F and its no further reducible.
- We try to get the set G where $F \equiv G$.
- This means that we could enforce G or F and the valid database states will remain the same.

Minimal Cover for a set of FDs (cont.)

- Formally G_{c} is the minimal cover of F if:
- $\mathrm{G}_{\mathrm{c}} \equiv \mathrm{F}$ (G_{c} and F are equivalent)
- The dependant (RHS) in every FD in G_{c} is a singleton attribute. This is called standard or canonical form.
- No $F D$ in G_{c} is redundant. In other words, if any FD in G_{c} is discarded, then G_{c} would be no longer equivalent to F.

Minimal Cover for a set of FDs (cont.)

- In practice the minimal cover is useful because the effort required to check for violations in the database is minimized therefore improving the database performance
- F can be its own minimal cover also known as canonical cover.
- There can be several minimal covers of F.

Minimal Cover for a set of FDs (cont.)

- The determinant (LHS) of every FD in G_{c} is irreducible. In other words, if any attribute is discarded from the determinant of any FD in G_{c}, then G_{c} would be no longer equivalent to F.

Algorithm to compute the minimal cover

Set G to F.
Convert all FDs into standard (canonical) form.
Remove all redundant attributes from the determinant (LHS) of the FDs from G
4. Remove all redundant FDs from G .

Two Notes:

- This algorithm might produce different results based on the order of candidates removal.
- Steps 3 and 4 aren't interchangeable.

Algorithm to compute the minimal cover

4. For each $\operatorname{FD} X \rightarrow A$ in G
if X^{+}with-respect-to $\mathrm{G}-\{\mathrm{X} \rightarrow \mathrm{A}\}$ contains A
then remove $X \rightarrow A$ from G;

- There is at least one minimal cover for any F, maybe several

Examples

- Consider a set of attributes $\{A B C\}$ and set of FDs F:
fd1: A->C
fd2: (AC)->B
fd3: B->A
fd4: C->(AB)
- Rewrite in standard form fd4:
- fd4a: C->A fd4b: C->B

Examples (cont.)

- Based on $\mathrm{fd} 4 \mathrm{~b}, \mathrm{~A}$ in fd 2 is redundant. We remove it. Now we remove fd4b because is identical to fd 2 .
- We are left with the minimal cover of F $\left(\mathrm{G}_{\mathrm{c}}\right)$: fd1: A->B fd2: B->C fd3: C->A

Algorithm to compute the minimal cover

1. $G:=f ;$
2. Replace each $\mathrm{FD} \mathrm{X} \rightarrow \mathrm{A}_{1}, A_{2}, \ldots, A_{K}$ in G by the k FDs $X \rightarrow \mathrm{~A}_{1}, \mathrm{X} \rightarrow \mathrm{A}_{2}, \mathrm{X} \rightarrow \mathrm{A}_{\mathrm{K}}$;
3. for each $F D X \rightarrow A$ in G
for each attribute $B X$
if $(X-B)^{+}$with-respect-to G contains A then replace $X \rightarrow A$ with $X-\{B\} \rightarrow A$ in G;

Examples (cont.)

- Rewrite in standard form:
fd1a: \{Student,Advisor\}->Grade
fd1b: \{Student,Advisor\}->Subject
fd2: Advisor->Subject
fd3a: \{Student,Subject\}->Grade
fd3b: \{\{Student,Subject\}->Advisor

Examples (cont.)

- Given fd2, Student is redundant in fd1b. We remove it. Now we remove fd1b since its identical to fd 2 .
- Next, fd1a is redundant because it's contained by the set \{fd2, fd3a\}. We remove it.

Examples (cont.)

- We are left with the minimal cover of F $\left(\mathrm{G}_{\mathrm{c}}\right):$
fd2:Advisor->Subject
fd3a: \{Student,Subject\}->Grade
fd3b: \{Student,Subject\}->Advisor
- So the idea is to remove the fd's which are derivable from the others, and keep those fd's used in the process of derivation.

