
11/12/2013

1

Normalisation

1

Introduction

� The normalization process, as first
proposed by Codd,

� takes a relation schema through a
series of tests to "certify" whether it
satisfies a certain normal form.

2

Introduction

� The process, which proceeds in a top-
down fashion by evaluating each
relation against the criteria for normal
forms and decomposing relations as
necessary,

� can thus be considered as relational
design by analysis

3

Introduction

� Initially, Codd proposed three normal
forms,

� which he called first, second, and third
normal form.

� A stronger definition of 3NF-called
Boyce-Codd normal form (BCNF)-was
proposed later by Boyce and Codd.

4

Introduction

� All these normal forms are based on the
functional dependencies among the
attributes of a relation.

� Later, a fourth normal form (4NF) and a
fifth normal form (5NF) were proposed,

� based on the concepts of multivalued
dependencies and join dependencies,
respectively;

5

Introduction

� Normalizing a logical database design
involves using formal methods to separate
the data into multiple related tables.

� The characteristics of normalised database
are a large number of tables with few
columns.

� An Unnormalised table suffers from insertion,
deletion and update anomalies.

6

11/12/2013

2

The purpose of Normalization

� The reduction in columns of a normalised
table means fewer indexes are required,
this in turn improves the performance of
database querying.

� The opportunity for database inconsistency
is reduced.

7

The purpose of Normalization
cont:

� There will be fewer null values for data
that is either not required or not known.

� Normalization aims to avoid redundant
duplication.

� A normalised relation include faster
sorting

8

9

Normal Forms

� A FD X → Y is a full functional dependency if
removal of any attribute from X means that
the dependency does not hold any more;

� otherwise, it is a partial functional
dependency.

10

1st Normal Form

� An attribute is prime if it is a member of any
key (Primary or candidate).

� A relation R is in first normal form if
domains of attributes include only atomic
values.

11

1st Normal Form

� This implies that we should disallow
composite attributes, multi-valued
attributes, and nested relations

� In other words, forbid all attributes
whose values for an individual tuple are
non-atomic

12

11/12/2013

3

The steps of transformation
from UNF into 1NF

1. Nominate an attribute or group of
attributes to act as the key for the
unnormalized table.

2. Identify the repeating group(s) in the
unnormalized table, which repeats for the
key attribute(s).

13

The steps of transformation
from UNF into 1NF

3 a. Remove the repeating group by
entering appropriate data into the empty
columns of tuples containing the repeating
data (‘flattening’ the table),

3b. or by placing the repeating data along
with a copy of the original key attribute
(s) into a separate relation.

14

15

Normalization into 1NF. (a) Relational schema that is not in 1NF.
(b) Example relation instance. (c) 1NF relation with redundancy.

16

Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ
relation with a “nested relation” PROJS. (b) Example extension of the
EMP_PROJ relation showing nested relations within each tuple.

17

(c) Decomposing EMP_PROJ into 1NF relations
EMP_PROJ1 and EMP_PROJ2 by propagating the primary
key.

18

Figure 14.10 The normalization process. (a) Normalizing EMP_PROJ into 2NF

relations. (b) Normalizing EMP_DEPT into 3NF relations.

11/12/2013

4

2nd Normal Form

� A relation R is in second normal form if
every non-prime attribute A in R is not
partially dependent on any key of R.

� Alternatively, R is in 2NF if every non-prime
attribute A in R is fully dependent on every
key of R.

19

steps of transformation from
1NF into 2NF

1. Identify the primary key for the 1NF
relation.

2. Identify the functional dependencies in
the relation.

3. If partial dependencies exist on the
primary key remove them by placing
them in a new relation along with a
copy of their determinant.

20

21 22

3rd Normal Form

� A relation R is in third normal form if for
every FD X → A that holds on R, either

- X is a superkey of R, or

- A is a prime attribute of R.

� Alternative Def .
� No transitive dependencies – If there is a set of
attributes Z that is neither a candidate key nor a
subset of any key (primary or candidate) of R ,
X → Z and Z → Y holds.

steps of transformation from
2NF into 3NF

1. Identify the primary key in the 2NF
relation.

2. Identify functional dependencies in the
relation.

3. If transitive dependencies exist on the
primary key remove them by placing them
in a new relation along with a copy of their
determinant (dominant).

23 24

Normalization to 2NF and 3NF. (a) The lots relation schema and its

functional dependencies FD1 through FD4. (b) Decomposing lots into the
2NF relations LOTS1 and LOTS2.

11/12/2013

5

25

(c) Decomposing LOTS1 into the 3NF relations LOTS1A and
LOTS1B. (d) Summary of normalization of lots.

Boyce-Codd normal

� A relation R is in Boyce-Codd normal
form if for every FD X → A that holds
on R, X is a superkey of R.

� A relation is in BCNF, if and only if
every determinant is a candidate key.

26

steps of transformation from
3NF into BCNF

1. Identify all candidate keys in the relation.

2. Identify all functional dependencies in the
relation.

3. If functional dependencies exist in the relation
where their determinants are not candidate keys
for the relation, remove the functional
dependencies by placing them in a new relation
along with a copy of their determinant.

27 28

29 30

11/12/2013

6

31 32

Decomposition.

� A more purist way –

� Normalization: a process in which
unsatisfactory relational schemas are
decomposed into smaller relation schemas
that possess desirable properties.

� Starting with a single universal relation
schema R = A1, A2,…. An that includes all the
attributes of the database.

Decomposition

� Decompose R into a set of relation schemas
D ={R1, R2,… Rm} using the FDs specified by
the database designers.

� D is called a decomposition of R.

33

Properties of Decompositions

� There are three important properties of a
decomposition:

� Attribute preservation

� Lossless Join

� Dependency Preservation

34

Attribute preservation property

: Each attribute in R will appear in at least
one relation schema Ri in the decomposition
so that no attributes are “lost”.

Another goal of decomposition is to have
each individual relation Ri in the
decomposition D be in BCNF or 3NF.

35

Dependency Preservation Property

Definition:

Given a set of dependencies F on R, the
projection of F on Ri, denoted by ππππ

Ri
(F)

where Ri is a subset of R, is the set of
dependencies X→ → → → Y in F+ such that the
attributes in X ∪ Y are all contained in Ri.

36

11/12/2013

7

Dependency Preservation Property

� Hence, the projection of F on each relation

schema Ri in the decomposition D is the set
of functional dependencies in F+, the closure

of F, such that all their left- and right-hand-

side attributes are in Ri.

37

Dependency Preservation Property:

� a decomposition D = {R1, R2, ..., Rm} of R is
dependency-preserving with respect to F
if the union of the projections of F on each
Ri in D is equivalent to F; that is,

((πR1(F)) ∪ ...∪ (πRm(F)))+ = F+

� Claim 1: It is always possible to find a
dependency-preserving decomposition D
with respect to F such that each relation Ri

in D is in 3NF.
38

Lossless join property

Definition:

� a decomposition D = {R1, R2, ..., Rm} of R has
the lossless (nonadditive) join property
with respect to the set of dependencies F on
R if, for every relation state r of R that satisfies
F, the following holds, where * is the natural
join of all the relations in D:

* (πR1(r), ..., πRm(r)) = r

39 40

Testing for a Lossless Join

� If we project R onto R1, R2,…, Rk , can
we recover R by rejoining?

� Any tuple in R can be recovered from
its projected fragments.

� So the only question is: when we rejoin,
do we ever get back something we
didn’t have originally?

Example of Lossy-Join Decomposition

� Lossy-join decompositions result in information
loss.

� Example: Decomposition of R = (A, B)
R1 = (A) R2 = (B)A

α
β

B

1
2

A B

α
α
β

1
2

1

r

∏A(r)
∏B(r)

∏A (r) ∏B (r)

A B

α
α
β
β

1
2

1
2

41

3NF Synthesis Algorithm

� Given a relation schema R and a set of FDs F,

� The following steps produce a 3NF
decomposition of R that satisfies the lossless
join condition and is dependency preserving:

� Find a minimal cover for F, say G.

42

11/12/2013

8

3NF Synthesis Algorithm

� For each FD X -> A in G, use XA as the
schema of one of the relations in the
decomposition.

� If none of the schemas from Step 2 includes a
superkey for R, add another relation schema
that is a key for R.

� 4. Delete any of the schemas from Step 2 that
is contained in another.

43 44

minimal cover for the FD’s:

1. Right sides are single attributes.

2. No FD can be removed.

3. No attribute can be removed from a left side.

45

Constructing a Minimal Basis

1. Split right sides.

2. Repeatedly try to remove an FD and
see if the remaining FD’s are
equivalent to the original.

3. Repeatedly try to remove an attribute
from a left side and see if the resulting
FD’s are equivalent to the original.

46

Example 1: 3NF Synthesis

� Address (Street, City, Postcode)

� F= {SC -> P, P -> C}.

� Step 1 of the algorithm finds that F3 is a minimal
cover.

� Step 2 of the algorithm would produce {P,C} and
{S,C,P}.

� Step 3 finds that SC is a superkey.

� Step 4 deletes {P,C} to leave just {S,C,P}.

Example 2

� schema(S) = {ENAME, CNAME, SAL}

� F = {Ename -> Salary}.

� Step 1 of the algorithm finds that F2 is a minimal
cover.

� Step 2 of the algorithm would produce {E,S}.

� Step 3 finds no superkey, so adds relation schema
{E,C}.

� Step 4 finds nothing to delete.

47

Example 3

� F = {AB->CD, C -> AD, D -> A }.

� Step 1 of the algorithm finds that F is not a minimal
cover.

� First we form a canonical set of FDs:

� {AB -> C, AB -> D, C -> A, C -> D, D -> A }.

� Then we find that AB -> D and C -> A are redundant.

� So we are left with minimal cover

� G = {AB -> C, C -> D, D -> A }.

� Try the rest.
48

11/12/2013

9

Exercise

� Consider the set of attributes { Drinker,
Address, Pub, Location, Beer, Cost }, along
with the following set of FDs:

� Drinker -> Address

� Pub -> Location

� Pub, Beer -> Cost, Location

� Produce a set of 3NF relation schemas for the
above.

49 50

