

Limitations of FD's

Some redundancies cannot be detected using just functional dependencies

- Example:
- suppose a teacher can teach several courses, several books can be recommended for a course, and same book can be recommended for different courses.

Limitations of FD's

- Suppose all this information is smushed together into one relation $C T B$
- There are no FD's, so key is CTB and relation is in BCNF
- But there is redundancy since course implies book
- Eliminate redundancy by decomposing into $C T$ and $C B$

Example of FD Limitations

Course (C)	Teacher (T)	Book (B)
Phys101	Green	Mechanics
Phys101	Green	Optics
Phys101	Brown	Mechanics
Phys101	Brown	Optics
Math301	Green	Mechanics
Math301	Green	Vectors
Math301	Green	Geometry

Multivalued dependencies (MVD's)

- MVD's express a condition among tuples of a relation that exists when the relation is trying to represent more than one many-many relationship.
- Then certain attributes become independent of one another, and their values must appear in all combinations.

Example

- Drinkers(name, addr, phones, beersLiked)
- A drinker's phones are independent of the beers they like.
- Thus, each of a drinker's phones appears with each of the beers they like in all combinations.
- If a drinker has 3 phones and likes 10 beers, then the drinker has 30 tuples

Example

- where each phone is repeated 10 times and each beer 3 times
- This repetition is unlike redundancy due to FD's, of which name->addr is the only one.

MVD's -

- So, we can think of X as a multivalued attribute implemented by putting different values in different rows,
- where the set of X values is fully determined by just the value of \boldsymbol{D}.
E.g.: imagine multivalued car-colour being determined by just the make and year of the car.

MVD's -

- A multivalued dependency of some attribute X on an attribute-set D is like a functional dependency except that X sometimes has several values for a given value of \boldsymbol{D}.
- The crucial point is that once the \boldsymbol{D} value is specified, the X values are independent of other attributes.

Multivalued Dependencies (MVDs)

- Let R be a relation schema and let $\alpha \subseteq R$ and β $\subseteq R$. The multivalued dependency

$$
\alpha \rightarrow \beta
$$

holds on R if in any legal relation $r(R)$, for all pairs for tuples t_{1} and t_{2} in r such that $t_{1}[\alpha]=$ $t_{2}[\alpha]$, there exist tuples t_{3} and t_{4} in r such that:

$$
\begin{aligned}
& t_{1}[\alpha]=t_{2}[\alpha]=t_{3}[\alpha]=t_{4}[\alpha] \\
& t_{3}[\beta]=t_{1}[\beta] \\
& t_{3}[R-\beta]=t_{2}[R-\beta] \\
& t_{4}[\beta]=t_{2}[\beta] \\
& t_{4}[R-\beta]=t_{1}[R-\beta]
\end{aligned} \rightarrow .
$$

Multi-valued Dependency

Definition: Multivalued dependency (MVD):
$A_{1} A_{2} \ldots A_{n} \rightarrow \rightarrow B_{1} B_{2} \ldots B_{m}$ holds for relation R if:
For all tuples t, u in R
If $t\left[A_{1} A_{2} \ldots A_{n}\right]=u\left[A_{1} A_{2} \ldots A_{n}\right]$, then there exists a v in R such that:
(1) $v\left[A_{1} A_{2} \ldots A_{n}\right]=t\left[A_{1} A_{2} \ldots A_{n}\right]=u\left[A_{1} A_{2} \ldots A_{n}\right]$
(2) $v\left[B_{1} B_{2} \ldots B_{m}\right]=t\left[B_{1} B_{2} \ldots B_{m}\right]$
(3) $v\left[C_{1} C_{2} \ldots C_{k}\right]=u\left[C_{1} C_{2} \ldots C_{k}\right]$, where $C_{1} C_{2} \ldots C_{k}$
is all attributes in R except ($A_{1} A_{2} \ldots A_{n} \cup B_{1} B_{2} \ldots B_{m}$)

Alt 1 Definition of MVD

- In relation R, we say MVD X->->Y holds
- If whenever there are tuples s and t in R
- such that $\quad \mathrm{X}(\mathrm{s})=\pi \mathrm{X}(\mathrm{t})$,
- then there is a tuple r in r such that:
- 1. $\Pi_{x y}(r)=\Pi_{x y}(s)$.
- 2. $\Pi(R-Y) \cup X(r)=\Pi(R-Y) \cup X(t)$.
- I.e., r agrees with s on the attributes mentioned, and with t on X and all the attributes not mentioned.

Alt 2 Definition of MVD

- Notion of MVD captures redundancy that FD's can't
- A multivalued dependency (MVD) on R, X ->-> Y, says that if two tuples of R agree on all the attributes of X, then their components in Y may be swapped, and the result will be two tuples that are also in the relation.
- i.e., for each value of X, the values of Y are independent of the values of $R-X-Y$.

16

Picture of MVD $X->->Y$

MVD Rules

- Every FD is an MVD (promotion).
- If $X->Y$, then swapping Y 's between two tuples that agree on X doesn't change the tuples.
- Therefore, the "new" tuples are surely in the relation, and we know $X->->Y$.
- In general If $A_{1} A_{2} \ldots A_{n} \rightarrow B_{1} B_{2} \ldots B_{m}$ then

$$
\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}} \rightarrow \rightarrow \mathrm{~B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{m}} \text { holds }
$$

MVD Rules

- COMPLEMENTATION Rule
- : If $X->->Y$, and Z is all the other attributes, then $X->->Z$.
- If $A_{1} A_{2} \ldots A_{n} \rightarrow B_{1} B_{2} \ldots B_{m}$ then $A_{1} A_{2} \ldots A_{n} \rightarrow \rightarrow$ $C_{1} C_{2} \ldots C_{k}$ where $C_{1} C_{2} \ldots C_{k}$ is all attributes in R except $\left(A_{1} A_{2} \ldots A_{n} \cup B_{1} B_{2} \ldots B_{m}\right)$
- AUGMENTATION Rule
- If $X \rightarrow \rightarrow Y$ and $W \supseteq Z$ then $W X \rightarrow \rightarrow Y Z$
- TRANSITIVITY Rule

If $X \rightarrow \rightarrow Y$ and $Y \rightarrow \rightarrow Z$ then $X \rightarrow \rightarrow(Z-Y)$

Fourth Normal Form

- The redundancy that comes from MVD's is not removable by putting the database schema in BCNF.
- There is a stronger normal form, called 4NF, that (intuitively) treats MVD's as FD's when it comes to decomposition, but not when determining keys of the relation.

Definition 4NF

- Given: relation R and set of MVD's for R
- Definition: R is in 4NF with respect to its MVD's if for every non-trivial MVD $A_{1} A_{2} \ldots A_{n} \rightarrow \rightarrow B_{1} B_{2} \ldots B_{m}, A_{1} A_{2} \ldots A_{n}$ is a superkey

4NF Definition cont:

- A relation R is in 4NF if: whenever
- $X->->Y$ is a nontrivial MVD, then X is a superkey.
- Nontrivial MVD means that:

1. Y is not a subset of X, and
2. X and Y are not, together, all the attributes.

- Note that the definition of "superkey" still depends on FD's only.

Trivial MVDs

- $A_{1} A_{2} \ldots A_{n} \rightarrow \rightarrow B_{1} B_{2} \ldots B_{m}$ where $B_{1} B_{2} \ldots B_{m}$ is a subset of $A_{1} A_{2} \ldots A_{n}$ or $\left(A_{1} A_{2} \ldots A_{n} \cup\right.$ $\left.B_{1} B_{2} \ldots B_{m}\right)$ contains all attributes of R

4th Normal Form

- A Boyce Codd normal form relation is in fourth normal form if
(a) there is no multi value dependency in the relation or
(b) there are multi value dependency but the attributes, which are multi value dependent on a specific attribute, are dependent between themselves.

BCNF Versus 4NF

- Remember that every FD $X->Y$ is also an MVD, $X->->Y$.
- Thus, if R is in 4NF, it is certainly in BCNF.
- Because any BCNF violation is a 4 NF violation.
- But R could be in BCNF and not 4NF, because MVD's are "invisible" to BCNF.

Decomposition and 4NF

- If $X->->Y$ is a 4NF violation for relation R, we can decompose R using the same technique as for BCNF.

1. $X Y$ is one of the decomposed relations.
2. All but $Y-X$ is the other.

Example

Consumers(name, addr, phones, candiesLiked)
FD: name -> addr
MVD's: name ->-> phones
name ->-> candiesLiked

- Key is \{name, phones, candiesLiked\}.
- All dependencies violate 4NF.

Example, Continued

- Decompose using name -> addr:

Consumers1(name, addr)

- In 4NF; only dependency is name -> addr. Consumers2(name, phones, candiesLiked)
- Not in 4NF. MVD's name ->-> phones and name ->-> candiesLiked apply. No FD's, so all three attributes form the key.
(Sadly, no simple rule for projecting MVD's onto decomposed relations - use heuristics and knowledge of application)

Example: Decompose Consumers2

- Either MVD name ->-> phones or name ->-> candiesLiked tells us to decompose to:
- Consumers3(name, phones)
- Consumers4(name, candiesLiked)

Example

- $R=(A, B, C, G, H, I)$
$F=\{A \rightarrow \rightarrow B$
$B \rightarrow \rightarrow H I$
$C G \rightarrow \rightarrow H\}$
- R is not in 4NF since $A \rightarrow \rightarrow B$ and A is not a superkey for R

Example

- Decomposition
a) $R_{1}=(A, B) \quad\left(R_{1}\right.$ is in 4 NF$)$
b) $R_{2}=(A, C, G, H, I)$
(R_{2} is not in 4NF)
c) $R_{3}=(C, G, H) \quad\left(R_{3}\right.$ is in $\left.4 N F\right)$
d) $R_{4}=(A, C, G, I)$
(R_{4} is not in
4NF)

