VJP L/saL

+ PL/SQL stands for Procedural Language extension of

SQL.

+ PL/SQL is a combination of SQL along with the
procedural features of programming languages.

+ It was developed by Oracle Corporation in the early
90’s to enhance the capabilities of SQL.

S

A PL/SQL Block:

e Each PL/SQL program consists of SQL and PL/SQL
statements

* which form a PL/SQL block.

* A PL/SQL Block consists of three sections:
» The Declaration section (optional).

» The Execution section (mandatory).
» The Exception (or Error) Handling section (optional).

P———

Declaration Section

* which are used to manipulate data in the execution
section.

* Placeholders may be any of Variables, Constants and
Records, which stores data temporarily.

o Cursors are also declared in this section.

The PL/SQL Engine:

* Oracle uses a PL/SQL engine to processes the PL/SQL
statements.

* A PL/SQL code can be stored in the client system
(client-side) or in the database (server-side).

3/24/2014

T ———
el

Declaration Section

* The Declaration section of a PL/SQL Block starts with
the reserved keyword DECLARE.

e This section is optional and is used to declare any

placeholders like variables, constants, records and
cursors,

P——

Execution Section

+ The Execution section of a PL/SQL Block starts with
the reserved keyword BEGIN and ends with END.

- This is a mandatory section and is the section where
the program logic is written to perform any task.

+ The programmatic constructs like loops, conditional

statement and SQL statements form the part of
execution section.

Exception Section

* The Exception section of a PL/SQL Block starts with
the reserved keyword EXCEPTION.
e This section is optional.

 Any errors in the program can be handled in this
section,

* so that the PL/SQL Blocks terminates gracefully.

Exception Section

« If the PL/SQL Block contains exceptions that cannot

be handled, the Block terminates abruptly with errors.

Every statement in the above three sections must end
with a semicolon ; .

PL/SQL blocks can be nested within other PL/SQL
blocks.

- Comments can be used to document code.

PL/SQL Block

¢ This is how a sample PL/SOL Block looks.
DECLARE

Variable declaration
BEGIN

Program Execution
EXCEPTION

Exception handling
END;

3/24/2014

P——

PL/SQL Placeholders

* Depending on the kind of data you want to store,

* you can define placeholders with a name and a
datatype.

 Few of the datatypes used to define placeholders
are as given below.

® Number (n,m) , Char (n) , Varcharz (n) , Date,
Long, Long raw, Raw, Blob, Clob, Nclob, Bfile

PL/SQL Placeholders

* Placeholders are temporary storage areas.

* Placeholders can be any of Variables, Constants and
Records.

* Oracle defines placeholders to store data temporarily,

 which are used to manipulate data during the
execution of a PL SQL block.

e

PL/SQL Variables

* These are placeholders that store the values that can
change through the PL/SQL Block.

° The General Syntax to declare a variable is:

» variable_namedatatype [NOT NULL := value J;
e variable_name is the name of the variable.
* datatype is a valid PL/SQL datatype.

PL/SQL Variables
* NOT NULL is an optional specification on the
variable.

* value or DEFAULT value is also an optional
specification,

* where you can initialize a variable.

* Each variable declaration is a separate statement and
must be terminated by a semicolon.

S

PL/SQL Variables

° When a variable is specified as NOT NULL,
° you must initialize the variable when it is declared.

* For example: The below example declares two
variables, one of which is a not null.

* DECLARE
* salary number(4);
e deptvarchar2(i0) NOT NULL := “HR Dept”;

e

PL/SQL Variables

* We can assign values to variables directly from the

database columns by using a SELECT.. INTO
statement.

* The General Syntax is:

e SELECT column_name INTO variable_name FROM
table_name [WHERE condition];

PL/SQL Variables

- Forexample,

« if'you want to store the current salary of an employee,
* you can use a variable.
- DECLARE salary number (6);

G

“salary” is a variable of datatype number and of
length 6.

3/24/2014

S

PL/SQL Variables

* The value of a variable can change in the execution or
exception section of the PL/SQL Block.

* We can assign values to variables in two ways.

* We can directly assign values to variables.
¢ The General Syntax is:

o variable_name:= value;

P——

Example

* The below program will get the salary of an employee
with id 16’ and display it on the screen.
* DECLARE
e var_salary number(6);
e var_emp_id number(6) = 1116;
* BEGIN SELECT salary INTO var_salary
° FROM employee

Example

° WHERE emp_id = var_emp_id;

* dbms_output.put_line(var_salary);

* dbms_output.put_line('The employee ' |
var_emp_id || ' has salary ' || var_salary); END;

3/24/2014

Scope of Variables

* PL/SQL allows the nesting of Blocks within Blocks

¢ i.e, the Execution section of an outer block can contain
inner blocks.

» Therefore, a variable which is accessible to an outer
Block is also accessible to all nested inner Blocks.

Scope of Variables

» The variables declared in the inner blocks are not
accessible to outer blocks.

* Based on their declaration we can classify variables
into two types.

* Localvariables - These are declared in a inner block
and cannot be referenced by outside Blocks.

e

Scope.qf Variables

[12> var_numi number;

[J3> var_num2 number;

[1 4> BEGIN

[J 5> var_numi := 100;

[6> var_numz2 := 200;

[17> DECLARE

[18> var_mult number;

[19> BEGIN

[J10> var_mult :=var_numi * var_numz;
[0 n> END;12> END; 13>/

Scope of Variables

© Global variables - These are declared in a outer block
and can be referenced by its itself and by its inner
blocks.

e For Example:

e creating two variables in the outer block and assigning
their product to the third variable created in the inner
block.

e

Scope of Variables

e The variable 'var_mult' is declared in the inner block,
* so cannot be accessed in the outer block
* i.e. it cannot be accessed after line 11.

® The variables 'var_numi' and 'var_num2' can be
accessed anywhere in the block.

PL/SQL Constants

* Asthe name implies a constant is a value used in a
PL/SQL Block that remains unchanged throughout the
program.

° A constant is a user-defined literal value.

* You can declare a constant and use it instead of actual
value.

PL/SQL Constants

* The General Syntax to declare a constant is:
e constant_name CONSTANT datatype :=
VALUE;

e constant_name is the name of the constant
i.e. similar to a variable name.

P——

PL/SQL Constants

* DECLARE
* salary_increase CONSTANT number (3) := 10;

* You must assign a value to a constant at the time you
declare it.
e If you do not assign a value to a constant while

declaring it and try to assign a value in the execution
section, you will get a error.

PL/SQL Constants

* For example:

e If you want to write a program which will increase the
salary of the employees by 25%,

* you can declare a constant and use it throughout the
program.

* Next time when you want to increase the salary again
you can change the value of the constant which will be

easier than changing the actual value throughout the
program.

3/24/2014

PL/SQL Constants

© The word CONSTANT is a reserved word
and ensures that the value does not change.

© VALUE - It is a value which must be assigned
to a constant when it is declared.

* You cannot assign a value later.

* For example, to declare salary_increase, you
can write code as follows:

P——

PL/SQL Constants

¢ If' you execute the below P1/SQL block you will get
error.

* DECLARE

* salary_increase CONSTANT number(3);
* BEGIN
« salary_increase := 100;

» dbms_output.put_line (salary_increase);
* END;

PL/SQL Records

* Records are another type of datatypes

e which oracle allows to be defined as a
placeholder.

® Records are composite datatypes,

* which means it is a combination of different

scalar datatypes like char, varchar, number
etc.

PL/SQL Records

e Each scalar data types in the record holds a
value.

¢ A record can be visualized as a row of data.
¢ [t can contain all the contents of a row.

3/24/2014

Declaring a record

» To declare a record,

* you must first define a composite datatype;
e then declare a record for that type.

* The General Syntax to define a composite
datatype is:

P————

Declaring a record

e first_col_name, second_col_name, etc.,
e - it is the names of the fields/columns
within the record.

e column_datatype defines the scalar datatype
of the fields.

Declaring a record

* TYPE record_type_name IS RECORD
(first_col_name column_datatype,
second_col_name column_datatype, ...);

)y

* record_type_name - it is the name of the
composite type you want to define.

P———

Declaring a record

© There are different ways you can declare the
datatype of the fields.

¢ 1) You can declare the field in the same way
you declare the fields when creating a table.
e 2) If a field is based on a column from

database table, you can define the field_type
as follows:

e col_name table_name.column_name%type;

Declaring a record

[IBy declaring the field datatype in the above
method,

[the datatype of the column is dynamically
applied to the field.

[IThis method is useful when you are altering
the column specification of the table, because
you do not need to change the code again.

CINOTE: You can use also %type to declare
variables and constants.

Declaring a record

° DECLARE

* TYPE employee_type IS RECORD

* (employee_id number(s),

* employee_first_name varcharz(2s),

* employee_last_name employee.last_name%type,
» employee_dept employee.dept%type);

* employee_salary employee.salary%type;

* employee_rec employee_type;

P————

Declaring a record

* The advantages of declaring the record as a
ROWTYPE are:

* You do not need to explicitly declare
variables for all the columns in a table.

e If you alter the column specification in the

database table, you do not need to update
the code.

Declaring a record

* The General Syntax to declare a record of a user-
defined datatype is:

e record_namerecord_type_name;

* The following code shows how to declare a record
called employee_rec based on a user-defined type

3/24/2014

Declaring a record
o If all the fields of a record are based on the columns of
atable,
* we can declare the record as follows:
e record_name table_name%ROWTYPE;

* For example, the above declaration of employee_rec
can be as follows:

° DECLARE employee_rec employee% ROWTYPE;

P———

Declaring a record

* The disadvantage of declaring the record as a
ROWTYPE is:

* When u create a record as a ROWTYPE, fields will be
created for all the columns in the table and memory
will be used to create the datatype for all the fields.

* So use ROWTYPE only when you are using all the
columns of the table in the program.

3/24/2014

Declaring a record Declaring a record
CINOTE: When you are creating a record, Usage
[Clyou are just creating a datatype, Syt

[Isimilar to Creating a variable. TYPE record_type_name IS RECORD Define a composite datatype, where
3 (column_name] datatype, each field is scalar.
[IYou need to assign values to the record to use

column_name?2 datatype, ...);
them. col_name Dynamically define the datatype of a
3 X 5 table_name.column_name%type; column based on a database column.
[IThe following table consolidates the different
5 R record_name record_type_name; Declare a record based on a user-
ways in which you can define and declare a defnadtin.
pl / Sql record record_name Dynamically declare a record based on
table_name%ROWTYPE; an entire row of a table. Each column

in the table corresponds to a field in the
record.

“Passing Values To and From a “Passing Values To and From a

Record Record

* When you assign values to a record,
* you actually assign values to the fields within it.

* The General Syntax to assign a value to a column
within a record direclty is:

. . . 1 © We can assign values to records using
record_name.col_name :=value;
= = : SELECT Statements as shown:

e If you used %9ROWTYPE to declare a record,
you can assign values as shown:
e record_name.column_name := value;

PP [P
ssing Values To and From a ssing Values To and From a

Record Record

e SELECT coly, col2
¢ INTO record_name.col_namei, record_name.col_name2
FROM table_name [WHERE clause]; o SELECT *
* If %ROWTYPE is used to declare a record then you

® INTO record_name
can directly assign values to the whole record instead « FROM bl hame
of each columns separately. =

* [WHERE clause];

¢ In this case, you must SELECT all the columns from
the table into the record as shown:

4{4‘€=—’_ﬁ=_\‘
ssing Values To and From a

Record

* The General Syntax to retrieve a value from a specific
field into another variable is:
e var_name :=record_name.col_name;
o The following table consolidates the different ways
you can assign values to and from a record:

Record

Syntax
record_name.col_name := value;

record_name.column_name := value;

SELECT coll, col2 INTO
record_name.col_namel,
record_name.col_name2 FROM
table_name [WHERE clause];
SELECT * INTO record_name FROM
table_name [WHERE clause];

variable_name :=
record_name.col_name;

4{4”*{_’_%’_\‘
ssing Values To an

3/24/2014

roma

Usage

To directly assign a value to a specific
column of a record.

To directly assign a value to a specific
column of a record, if the record is
declared using %#ROWTYPE.

To assign values to each field of a
record from the database table.

To assign a value to all fields in the
record from a database table.

To get a value from a record column
and assigning it to a variable.

