
3/24/2014

1

PL/SQL
• PL/SQL stands for Procedural Language extension of 

SQL. 

• PL/SQL is a combination of SQL along with the 
procedural features of programming languages. 

• It was developed by Oracle Corporation in the early 
90’s to enhance the capabilities of SQL. 

The PL/SQL Engine:
� Oracle uses a PL/SQL engine to processes the PL/SQL 

statements. 

� A PL/SQL code can be stored in the client system 
(client-side) or in the database (server-side). 

A PL/SQL Block:
� Each PL/SQL program consists of SQL and PL/SQL 

statements 

� which form a PL/SQL block. 

� A PL/SQL Block consists of three sections: 

� The Declaration section (optional).

� The Execution section (mandatory).

� The Exception (or Error) Handling section (optional).

Declaration Section
� The Declaration section of a PL/SQL Block starts with 

the reserved keyword DECLARE.

� This section is optional and is used to declare any 
placeholders like variables, constants, records and 
cursors, 

Declaration Section
� which are used to manipulate data in the execution 

section. 

� Placeholders may be any of Variables, Constants and 
Records, which stores data temporarily.

� Cursors are also declared in this section. 

Execution Section
• The Execution section of a PL/SQL Block starts with 

the reserved keyword BEGIN and ends with END. 

• This is a mandatory section and is the section where 
the program logic is written to perform any task. 

• The programmatic constructs like loops, conditional 
statement and SQL statements form the part of 
execution section. 



3/24/2014

2

Exception Section
� The Exception section of a PL/SQL Block starts with 

the reserved keyword EXCEPTION. 

� This section is optional. 

� Any errors in the program can be handled in this 
section, 

� so that the PL/SQL Blocks terminates gracefully. 

Exception Section
• If the PL/SQL Block contains exceptions that cannot 

be handled, the Block terminates abruptly with errors. 

• Every statement in the above three sections must end 
with a semicolon ; .

• PL/SQL blocks can be nested within other PL/SQL 
blocks. 

• Comments can be used to document code. 

PL/SQL Block
� This is how a sample PL/SQL Block looks.

DECLARE 

Variable declaration

BEGIN 

Program Execution 

EXCEPTION 

Exception handling

END;

PL/SQL Placeholders
� Placeholders are temporary storage areas.

� Placeholders can be any of Variables, Constants and 
Records. 

� Oracle defines placeholders to store data temporarily,

� which are used to manipulate data during the 
execution of a PL SQL block. 

PL/SQL Placeholders
� Depending on the kind of data you want to store, 

� you can define placeholders with a name and a 
datatype. 

� Few of the datatypes used to define placeholders 
are as given below. 

� Number (n,m) , Char (n) , Varchar2 (n) , Date , 
Long , Long raw, Raw, Blob, Clob, Nclob, Bfile

PL/SQL Variables
� These are placeholders that store the values that can 

change through the PL/SQL Block. 

� The General Syntax to declare a variable is:

� variable_name datatype [NOT NULL := value ];

� variable_name is the name of the variable.

� datatype is a valid PL/SQL datatype. 



3/24/2014

3

PL/SQL Variables
� NOT NULL is an optional specification on the 

variable.

� value or DEFAULT value is also an optional 
specification, 

� where you can initialize a variable.

� Each variable declaration is a separate statement and 
must be terminated by a semicolon. 

PL/SQL Variables
• For example, 

• if you want to store the current salary of an employee, 

• you can use a variable. 

• DECLARE salary  number (6);

• * “salary” is a variable of datatype number and of 
length 6.

PL/SQL Variables
� When a variable is specified as NOT NULL, 

� you must initialize the variable when it is declared.

� For example: The below example declares two 
variables, one of which is a not null. 

� DECLARE

� salary number(4); 

� dept varchar2(10) NOT NULL := “HR Dept”;

PL/SQL Variables
� The value of a variable can change in the execution or 

exception section of the PL/SQL Block. 

� We can assign values to variables in two ways.

� We can directly assign values to variables.

� The General Syntax is: 

� variable_name:=  value; 

PL/SQL Variables
� We can assign values to variables directly from the 

database columns by using a SELECT.. INTO 
statement. 

� The General Syntax is: 

� SELECT column_name INTO variable_name FROM 
table_name [WHERE condition]; 

Example
� The below program will get the salary of an employee 

with id '1116' and display it on the screen.

� DECLARE 

� var_salary number(6); 

� var_emp_id number(6) = 1116; 

� BEGIN SELECT salary INTO var_salary 

� FROM employee 



3/24/2014

4

Example
� WHERE emp_id = var_emp_id; 

� dbms_output.put_line(var_salary); 

� dbms_output.put_line('The employee '   || 
var_emp_id || ' has  salary  ' || var_salary); END; 

Scope of Variables 
� PL/SQL allows the nesting of Blocks within Blocks 

� i.e, the Execution section of an outer block can contain 
inner blocks. 

� Therefore, a variable which is accessible to an outer 
Block is also accessible to all nested inner Blocks. 

Scope of Variables 
� The variables declared in the inner blocks are not 

accessible to outer blocks. 

� Based on their declaration we can classify variables 
into two types.

� Local variables - These are declared in a inner block 
and cannot be referenced by outside Blocks.

Scope of Variables 
� Global variables - These are declared in a outer block 

and can be referenced by its itself and by its inner 
blocks. 

� For Example: 

� creating two variables in the outer block and assigning 
their product to the third variable created in the inner 
block. 

Scope of Variables � 1> DECLARE

� 2>  var_num1 number; 

� 3> var_num2 number; 

� 4> BEGIN 

� 5> var_num1 := 100; 

� 6> var_num2 := 200; 

� 7> DECLARE 

� 8> var_mult number; 

� 9> BEGIN 

� 10> var_mult := var_num1 * var_num2;

� 11> END; 12> END; 13> /

Scope of Variables 
� The variable 'var_mult' is declared in the inner block, 

� so cannot be accessed in the outer block 

� i.e. it cannot be accessed after line 11. 

� The variables 'var_num1' and 'var_num2' can be 
accessed anywhere in the block.



3/24/2014

5

PL/SQL Constants
� As the name implies a constant is a value used in a 

PL/SQL Block that remains unchanged throughout the 
program.

� A constant is a user-defined literal value. 

� You can declare a constant and use it instead of actual 
value. 

PL/SQL Constants
� For example: 

� If you want to write a program which will increase the 
salary of the employees by 25%, 

� you can declare a constant and use it throughout the 
program. 

� Next time when you want to increase the salary again 
you can change the value of the constant which will be 
easier than changing the actual value throughout the 
program.

PL/SQL Constants
�The General Syntax to declare a constant is: 

� constant_name CONSTANT datatype := 
VALUE;

� constant_name is the name of the constant 
i.e. similar to a variable name.

PL/SQL Constants
�The word CONSTANT is a reserved word 

and ensures that the value does not change.

�VALUE - It is a value which must be assigned 
to a constant when it is declared. 

�You cannot assign a value later. 

�For example, to declare salary_increase, you 
can write code as follows: 

PL/SQL Constants
� DECLARE 

� salary_increase CONSTANT number (3) := 10; 

� You must assign a value to a constant at the time you 
declare it. 

� If you do not assign a value to a constant while 
declaring it and try to assign a value in the execution 
section, you will get a error. 

PL/SQL Constants
� If you execute the below Pl/SQL block you will get 

error. 

� DECLARE 

� salary_increase CONSTANT number(3); 

� BEGIN 

� salary_increase := 100;  

� dbms_output.put_line (salary_increase); 

� END; 



3/24/2014

6

PL/SQL Records
�Records are another type of datatypes 

�which oracle allows to be defined as a 
placeholder.

�Records are composite datatypes, 

�which means it is a combination of different 
scalar datatypes like char, varchar, number 
etc.

PL/SQL Records
�Each scalar data types in the record holds a 

value.

�A record can be visualized as a row of data. 

� It can contain all the contents of a row.

Declaring a record
�To declare a record, 

�you must first define a composite datatype; 

� then declare a record for that type. 

�The General Syntax to define a composite 
datatype is: 

Declaring a record
�TYPE record_type_name IS RECORD 

(first_col_name column_datatype, 
second_col_name column_datatype, ...); 

� record_type_name – it is the name of the 
composite type you want to define.

Declaring a record
� first_col_name, second_col_name, etc.,

� - it is the names of the fields/columns 
within the record.

� column_datatype defines the scalar datatype 
of the fields. 

Declaring a record
�There are different ways you can declare the 

datatype of the fields. 

� 1) You can declare the field in the same way 
you declare the fields when creating a table. 

�2) If a field is based on a column from 
database table, you can define the field_type 
as follows: 

� col_name table_name.column_name%type; 



3/24/2014

7

Declaring a record
�By declaring the field datatype in the above 

method, 

�the datatype of the column is dynamically 
applied to the field.

�This method is useful when you are altering 
the column specification of the table, because 
you do not need to change the code again. 

�NOTE: You can use also %type to declare 
variables and constants.

Declaring a record
� The General Syntax to declare a record of a user-

defined datatype is: 

� record_name record_type_name; 

� The following code shows how to declare a record 
called employee_rec based on a user-defined type

Declaring a record
� DECLARE 

� TYPE employee_type IS RECORD 

� (employee_id number(5), 

� employee_first_name varchar2(25), 

� employee_last_name employee.last_name%type, 

� employee_dept employee.dept%type); 

� employee_salary employee.salary%type;

� employee_rec employee_type;

Declaring a record
� If all the fields of a record are based on the columns of 

a table, 

� we can declare the record as follows: 

� record_name table_name%ROWTYPE; 

� For example, the above declaration of employee_rec 
can be as follows: 

� DECLARE employee_rec employee%ROWTYPE; 

Declaring a record
�The advantages of declaring the record as a 

ROWTYPE are:

�You do not need to explicitly declare 
variables for all the columns in a table. 

� If you alter the column specification in the 
database table, you do not need to update 
the code. 

Declaring a record
� The disadvantage of declaring the record as a 

ROWTYPE is:

� When u create a record as a ROWTYPE, fields will be 
created for all the columns in the table and memory 
will be used to create the datatype for all the fields. 

� So use ROWTYPE only when you are using all the 
columns of the table in the program.



3/24/2014

8

Declaring a record
�NOTE: When you are creating a record, 

�you are just creating a datatype, 

�similar to creating a variable. 

�You need to assign values to the record to use 
them.

�The following table consolidates the different 
ways in which you can define and declare a 
pl/sql record

Declaring a record

Syntax

Usage

TYPE record_type_name IS RECORD 

(column_name1 datatype, 

column_name2 datatype, ...); 

Define a composite datatype, where 

each field is scalar. 

col_name

table_name.column_name%type; 

Dynamically define the datatype of a 

column based on a database column. 

record_name record_type_name; Declare a record based on a user-

defined type. 

record_name 

table_name%ROWTYPE; 

Dynamically declare a record based on 

an entire row of a table. Each column 

in the table corresponds to a field in the 

record.

Passing Values To and From a 

Record 
� When you assign values to a record, 

� you actually assign values to the fields within it. 

� The General Syntax to assign a value to a column 
within a record direclty is: 

� record_name.col_name := value; 

Passing Values To and From a 

Record 

� If you used %ROWTYPE to declare a record, 
you can assign values as shown:
� record_name.column_name := value;

�We can assign values to records using 
SELECT Statements as shown:

Passing Values To and From a 

Record 
� SELECT col1, col2 

� INTO record_name.col_name1, record_name.col_name2 
FROM table_name [WHERE clause]; 

� If %ROWTYPE is used to declare a record then you 
can directly assign values to the whole record instead 
of each columns separately. 

Passing Values To and From a 

Record 
� In this case, you must SELECT all the columns from 

the table into the record as shown: 

� SELECT * 

� INTO record_name 

� FROM table_name 

� [WHERE clause]; 



3/24/2014

9

Passing Values To and From a 

Record 
� The General Syntax to retrieve a value from a specific 

field into another variable is:

� var_name := record_name.col_name;

� The following table consolidates the different ways 
you can assign values to and from a record: 

Passing Values To and From a 

Record 
Syntax Usage 

record_name.col_name := value; To directly assign a value to a specific 

column of a record. 

record_name.column_name := value; To directly assign a value to a specific 

column of a record, if the record is 

declared using %ROWTYPE. 

SELECT col1, col2 INTO 

record_name.col_name1, 

record_name.col_name2 FROM 

table_name [WHERE clause]; 

To assign values to each field of a 

record from the database table. 

SELECT * INTO record_name FROM 

table_name [WHERE clause]; 

To assign a value to all fields in the 

record from a database table.

variable_name := 

record_name.col_name; 

To get a value from a record column 

and assigning it to a variable. 


