
3/24/2014

1

PL/SQL function

� PL/SQL function is a named block that returns a 
value. 

� PL/SQL functions are also known as subroutines or 
subprograms. 

� To create a PL/SQL function, you use the following 
syntax 

� CREATE [OR REPLACE] FUNCTION {function_name} [(
� {parameter_1} [IN] [OUT] {parameter_data_type_1},
� {parameter_2} [IN] [OUT] {parameter_data_type_2},...
� {parameter_N} [IN] [OUT] {parameter_data_type_N} )]
� RETURN {return_datatype} IS
� --the declaration statements
� BEGIN
� -- the executable statements
� RETURN {return_data_type};
� EXCEPTION
� -- the exception-handling statements
� END; 

PL/SQL function

� The {function_name} is the name of the function.

� Function name should start with a verb for example 
function convert_to_number.

� {parameter_name} is the name of parameter being 
passed to function along with parameter’s data type 
{parameter_data_type}. 

� There are three modes for parameters: IN,OUT and IN 
OUT.

PL/SQL function

� The IN mode is the default mode. 

� You use the IN mode when you want the formal 
parameter is read-only. 

� It means you cannot alter its value in the function. 

� The IN parameter behaves like a constant inside the 
function. 

� You can assign default value to the IN parameter or 
make it optional.

PL/SQL function

� The OUT parameters return values to the caller of a 
subprogram. 

� An OUT parameter cannot be assigned a default value 
therefore you cannot make it optional. 

� You need to assign values to the OUT parameter before 
exiting the function or its value will be NULL. 

� From the caller subprogram, you must pass a variable to 
the OUT parameter.

PL/SQL function

� In the IN OUT mode, the actual parameter is passed 
to the function with initial values. 

� And then inside the function, the new value is set for 
the IN OUT parameter and returned to the caller. 

� The actual parameter must be a variable. 



3/24/2014

2

PL/SQL function

� The function must have at least one RETURN statement 
in the execution part. 

� The RETURN clause in the function header specifies the 
data type of returned value.

� The block structure of a function is the same as an 
PL/SQL block except for the addition CREATE [OR 
REPLACE] FUNCTION, the parameters section, and a 
RETURN clause.

Examples of PL/SQL Function

� We are going to create a function that parses a string 
and returns a number if the string being passed is a 
number otherwise it returns NULL.

� CREATE OR REPLACE FUNCTION try_parse(
� iv_number IN VARCHAR2)
� RETURN NUMBER IS
� BEGIN
� RETURN TO_NUMBER(iv_number);
� EXCEPTION
� WHEN OTHERS THEN
� RETURN NULL;
� END;

PL/SQL function

� The input parameter is iv_number that is a varchar2 
type. 

� We can pass any string to the function try_parse(). 

� We use built-in function to_number to convert a 
string into a number. 

� If any exception occurs, the function will return NULL 
in the exception section of the function block. 

� SET SERVEROUTPUT ON SIZE 1000000;
� DECLARE
� n_x NUMBER;
� n_y NUMBER;
� n_z NUMBER;
� BEGIN
� n_x := try_parse('574');
� n_y := try_parse('12.21');
� n_z := try_parse('abcd');
� DBMS_OUTPUT.PUT_LINE(n_x);
� DBMS_OUTPUT.PUT_LINE(n_y);
� DBMS_OUTPUT.PUT_LINE(n_z);
� END;
� /

PL/SQL procedure

� Like a PL/SQL function, a PL/SQL procedure is a 
named block that performs one or more actions.

� PL/SQL procedure allows you to wrap complex 
business logic and reuse it. 

� The following illustrates the PL/SQL procedure’s 
syntax:



3/24/2014

3

� We can divide the PL/SQL procedure into two 
sections: header and body.

� PL/SQL Procedure’s Header

� The section before the keyword IS is called 
procedures’ header or procedure’s signature. 

� The elements in the procedure’s header are listed as 
follows:

� Schema: 

� The optional name of the schema that own this 
procedure. 

� The default is the current user. 

� If you specify a different user, the current user must 
have privileges to create a procedure in that schema.

� Name: 

� The name of the procedure. 

� The name of the procedure like a function should be 
always meaningful and starting by a verb.

� Parameters: 

� The optional list of parameters. 

� Refer to the PL/SQL function for more information on 
parameter with different modes IN, OUT and IN OUT.

� AUTHID: 

� The optional AUHTID determines whether the 
procedure will execute with the privileges of the owner 
(DEFINER) of the procedure or the current user 
(CURRENT_USER).



3/24/2014

4

PL/SQL Procedure’s Body

� Everything after the keyword IS is known as 
procedure’s body. 

� The procedure’s body consists of declaration, 
execution and exception sections. 

� The declaration and exception sections are optional. 

� You must have at least one executable statement in 
the execution section. 

� In PL/SQL procedure you still have RETURN 
statement.

� However unlike the RETURN statement in function 
that returns a value to calling program, 

� RETURN statement in procedure is used only to halt 
the execution of procedure and return control to the 
caller. 

� RETURN statement in procedure does not take any 
expression or constant.

Example of PL/SQL Procedures

� We’re going to develop a procedure called 
adjust_salary(). 

� We’ll update the salary information of employees in 
the table employees by using SQL UPDATE statement. 

� Here is the PL/SQL procedure adjust_salary() code 
sample:

� There are two parameters of the procedure 
IN_EMPLOYEE_ID and IN_PERCENT. 

� This procedure will update salary information by a 
given percentage (IN_PERCENT) for a given employee 
specified by IN_EMPLOYEE_ID. 

� In the procedure’s body, we use SQL UPDATE 
statement to update salary information. 

� Let’s take a look how to call this procedure.

Calling PL/SQL Procedures

� A procedure can call other procedures. 

� A procedure without parameters can be called 
directly by using keyword EXEC or EXECUTE 
followed by procedure’s name as below:

� EXEC procedure_name();

� EXEC procedure_name;



3/24/2014

5

� Procedure with parameters can be called by using 
keyword EXEC or EXECUTE followed by procedure’s 
name and parameter list in the order corresponding 
to the parameters list in procedure’s signature.

� EXEC procedure_name(param1,param2…paramN);


