Conditional Statements in PL/SQL

* PL/SQL supports programming language
features like conditional statements,
iterative statements.

© The programming constructs are similar to

how you use in programming languages like
Javaand C++.

PL/SQL IF Statement

* You can compare two variables of the same type or
different types but they are convertible to each other.
* You can compare two literals.

¢ In addition, a Boolean variable can be used as a
condition.

* The PL/SQL IF statement has three forms:
o [F-THEN, IF-THEN-ELSE and IF-THEN-ELSIF

e

PL/SQL IF-THEN Statement

o If the condition evaluates to true, the
sequence of statements will execute.

e If the condition is false or NULL,
e the IF statement does nothing.

* Note that END IF is used to close the IF
statement, not ENDIF.

PL/SQL IF Statement

* The PL/SQL IF statement allows you to execute a
sequence of statements conditionally.

» The IF statements evaluate a condition.

* The condition can be anything that evaluates to a
logical true or false

* such as comparison expression or combination of
multiple comparison expressions.

3/24/2014

S =

PL/SQL IF-THEN Statement

* The following is the syntax of the IF-THEN
statement:

e IF condition THEN
* sequence_of_statements;

* END IF;

g;sﬁﬁﬁN g%atgement

ra

[ECLEE

n_min_salary NOMBER(E, 0);

n_max_ralary NDMBER(E, 0);

n_mid_salary NOMBER(E, 2);
EPLOTEES . SRLARTRTYFE;
EMPLOYEES .EMPLOYEE IIRTYEE == 200:

r_stlary
n_emp _id

1 EEGIN

i -- get salary range of the employes
3 -- bazed on job

4 SELECT mir_zalamy,

5. max_salary

] INTO n_min_salary,

T n_max_=alary

B FROM JOEZ

9. WHERE JOB ID = (SELECT JOB ID

100 FROM EMELOYEES

11, WHERE EMPLOYEE ID = n_emp id):

7SQL IF-THEI

1. -- opdate employee's salary if it is lower than
i. -- the mid range

1. IF n_salary < n_mid salary THER

LS UFDATE employees

5. ZET salary = n mid salary

§. WEERE employee id = n emp id:

i END IE:

8. END:

[PP7SaL IF-THEN EroE-)

Statement

e IF condition THEN

¢ sequence_of _if statements;
* ELSE

e sequence_of else_statements;
* END IF;

e If the condition is NULL or false, the sequence of else
statements will execute.

3/24/2014

-- calcolate mid-range

n_nid_:aluy = in_n.i.u_;nlary + n_nu_salary] [12;
-- get salary of the given employee

SELECT =alary

I8 n_salary

FROM employees

WHERE employee id = n emp id;

I R R S

Statement

e This is the second form of the IF statement.

© The ELSE keyword is added with the alternative
sequence of statements.

 Below is the syntax of the IF-ELSE statement.

gﬂ’mg

1 -- opdate employee's salary if it ir lower than
2 -- tha mid rangs, otharwisa incrazce 5%

3 IF n salary < n_mid salary THEN

4 TEDATE employess

5 SET salazy = ¢ mid salary

& WHERE employjee_id = n emp_id:

7 ELSE

B TEDATE employees

L ZET =alary = salary + salary * § /100

10. WHERE employee id = r emp id;
11 END IE:

Statement

* PL/SQL supports IF-THEN-ELSIF statement to allow
you to execute a sequence of statements based on
multiple conditions.

* The syntax of PL/SQL IF-THEN-ELSIF is as follows:

Statement

* Note that an IF statement can have any number of
ELSIF clauses.

e IF the first condition is false or NULL, the ELSIF clause
checks second condition and so on.

e Ifall conditions are NULL or false, the sequence of
statements in the ELSE clause will execute.

gﬂ’mg

1. -- opdate employee's salary if it is lower than

i. -- the mid range, otherwice increzze 3f

3. IF n_salary » n_mid =salary THEN

i DEMS OUTPUT.PUT LINE{'Employes ' || TO CHAR(r emp id) ||

5. " has salary &' || T0_(HAR(n salary) ||
£. " higher than mid-range §' ||

T0 CEMRn mid salary)):

3/24/2014

Statement

e IF condition1 THEN

* sequence_of_statements1
* ELSIF condition2 THEN

* sequence_of statements2
* ELSE

* sequence_of_statements3
* END IF;

Statement

* Note that the final ELSE clause is optional so you can
omit it.

e If any condition from top to bottom is true, the
corresponding sequence of statements will execute.

gﬂ’mg

1. ELEIF n_salary < n mid_salary THEN

i IBM3 OUTEOT.PUT_LIKE ('Eaplopee ' || 70 CHRRin_emp id) ||

" has salary §' | 'ﬂJ_CIm::_nluy] |
" lover than mid-range §' ||

.

10 CEBin mid salary))

atement -

ELE
TEMS_CUTEDT.POT_LIKE('Exployee ' || TO CHARin_emp id) ||
! has salary §' || T‘D_GERNL_HL&:}'J 1l

e La R e

. equal to mid-range §' ||
T0 CHAR{n_mid =alary)):

5. EHD IE:

E. EHD:

S

PL/SQL FOR Loop

* FOR loop_counter IN [REVERSE] lower_bound ..
higher_bound

* LOOP
¢ sequence_of_ statements;
* END LOOP;

P———

PLESQbEQRAEPRR 2 100000

* DECLARE
e n_times NUMBER :=10;

* BEGIN

¢ FOR n_i IN REVERSE 1..n_times LOOP
e« DBMS_OUTPUT.PUT_LINE(n_i);

* END LOOP;

* END;

3/24/2014

PL/SQL FOR Loop

* PL/SQL FOR loop is an iterative statement that allows
you to execute a sequence of statements a fixed
number of times.

* Unlike the PL/SQL WHILE loop, the number of
iterations of the PL/SQL FOR loop is known before the
loop starts.

© The following illustrates the PL/SQL FOR loop
statement syntax:

S

PL/SQL FOR Loop

e SET SERVEROUTPUT ON SIZE 1000000;
* DECLARE
e n_times NUMBER :=10;
* BEGIN
¢ FOR n_i IN 1..n_times LOOP
e DBMS_OUTPUT.PUT_LINE(n_i);
* END LOOP;
* END;
o/

e

PL/SQL WHILE Loop

e If you don’t know in advance how many times to
execute a sequence of statements because the
execution depends on a condition that is not fixed.

* In such cases, you should use PL/SQL WHILE loop
statement.

¢ The following illustrates the PL/SQL WHILE LOOP
syntax:

3/24/2014

PL/SQL WHILE Loop
* The PL/SQL CASE statement allows you to execute a
* WHILE condition sequence of statements based on a selector.
* LOOP * Aselector can be anything such as variable, function,
* sequence_of statements; or expression that the CASE statement evaluates to a
+ END LOOP; Boolean value.
* You can use almost any PL/SQL data types as a
selector except BLOB, BFILE and composite types.
° syntax:
S s TTTE— I T —
[¢<label_namess]

» Unlike the PL/SQL IF statement, PL/SQL CASE
statement uses a selector instead of combination of
multiple Boolean expressions.

* The following illustrates the PL/SQL CASE statement

CASE [TRUE | =elector]
WHEH expressionl THEN
sequence_of statementsl:
WHEH expression? THEN

sequence_of statementsZ:

WHEH expressionl THEN

zequence_of statementsH:
10. [ELEZE sqneme_o{_sutenutml;]
11. EKD CAZE [label name]:

WwoEm -3 o W e Ba R s

N N
¢ Followed by the keyword CASE is a selector. e If the selector’s value is not one of the choices covered
* The PL/SQL CASE statement evaluates the selector by WHEN clause,
only once to decide which sequence of statements to e the sequence of statements in the ELSE clause is
execute. executed.
* Followed by the selector is any number of the WHEN * The ELSE clause is optional so if you omit the ESLE
clause. clause, PL/SQL will add the following implicit ELSE
o If the selector value is equal to expression in the clause:
WHEN clause, » ELSE RAISE CASE_NOT_FOUND;
¢ the corresponding sequence of statement after the ¢ The keywords END CASE are used to terminate the
THEN keyword will be executed. CASE statement.

tement

¢ The following code snippet demonstrates the PL/SQL
CASE statement. We'll use table employees for
demonstration

1 -- evalotate commission percenmtage

Z CASE n_pct

3 WHEN 0 TEEN

4. r_eval == "H/R';

L WHEN 0.1 THENW

] v_eval = "Low's

T WHEN 0.4 THENW

B 'u'_e'u'al := 'High';

5 ELSE

10 v_eval == '"Fair's

1hL END CAZE:

. -- print commissiom evaloation

13. DEME OUTPUT.PUT_LIKE{'Employee ' || n_emp id ||
14, ! commission ' || TO CHAR{n_pct) ||
15, ' which i= ' || v_eval):
16. EXD:

Lo
Lo e of gty
Lo HIk

ra

1.

I Y)

LT ZERVEROUTEUT O 3IZE 1000000:
IECLARE

n_prt employess commission petiTYPE:

v_eval VARCHARZ(10):

n emp id employees.employee idRTVFE := 145;

BEGIN
-- get commission percentage
ZEIECT commission_pet
INTO n_pet
FRQ employees
WHERE employee_id = n_emp_id:

3/24/2014

* PL/SQL LOOP is an iterative control structure that
allows you to execute a sequence of statements

repeatedly.
© The simplest of LOOP consists of
¢ the LOOP keyword,
¢ the sequence of statements and
¢ the END LOOP keywords

* Note that there must be at least one executable
statement between LOOP and END LOOP keywords.

* The sequence of statements is executed repeatedly

until it reaches a loop exits.

¢ PL/SQL provides you EXIT and EXIT-WHEN
statements to allow you to terminate a loop.

© The EXIT forces the loop halt execution
unconditionally and passes control to the next
statement after keyword END LOOP.

© The EXIT-WHEN statement allows the loop complete
conditionally.

° When the EXIT-WHEN statement is reached, the
condition in the WHEN clause is checked.

¢ The following illustrates PL/SQL LOOP with EXIT
and EXIT-WHEN statements:

100e
EXIT:
EXD 100B:

[P ——

100p

EXIT WEEN eondition:
END LOOE:

[

Wwom - e o w Ba Ra ke

10.
bl
a7l

SET SERVEROUTEUT OH SIZE 1000000:
IECLARE n_counter NIMEER := 0:
EEGIH
Io0p
T courter := n _counter + 1;
DEME_OUTEUT.EUT_LINE (n_counter);
IF n_counter = § THEN
EXIT:
END IE:
EKD LOOE:
EXD:
!

3/24/2014

e If the condition is true, the loop is terminated and
pass control to the next statement after keyword END
LOOP.

¢ If condition is false, the loop will continue repeatedly
until the condition is evaluated to true.

 Therefore if you don’t want to have a infinite loop you
must change variable’s value inside loop to make
condition true.

l’”St’:ﬁefﬁent

* In this example, we declare a counter. Inside the loop
we add 1 to the counter and print it out.

o If the counter is 5, we use EXIT statement to terminate
the loop.

 Below is the code example of PL/SQL LOOP
statement with EXIT:

!%H EN!Statement

* We'll use the same counter example above. However
instead of using the and EXIT statements,

* we use EXIT-WHEN to terminate the loop.
* The code example is as follows:

4 e n e B3 R

10.

SET SERVEROUTEDT ON SIZE 1000000:
IECLARE n_counter NRMEER := (;
EEGIN
Lode
L COURtET I I COURter + 1;
DEME QUTEUT.PUT LIKE in_counter):
EXIT WHEN n_counter = 5;
END LODE:
ENI:
i

3/24/2014

