
3/24/2014

1

Conditional Statements in PL/SQL

�PL/SQL supports programming language 
features like conditional statements, 
iterative statements.

�The programming constructs are similar to 
how you use in programming languages like 
Java and C++. 

PL/SQL IF Statement
� The PL/SQL IF statement allows you to execute a 

sequence of statements conditionally. 

� The IF statements evaluate a condition. 

� The condition can be anything that evaluates to a 
logical true or false

� such as comparison expression or combination of 
multiple comparison expressions. 

PL/SQL IF Statement
� You can compare two variables of the same type or 

different types but they are convertible to each other. 

� You can compare two literals. 

� In addition, a Boolean variable can be used as a 
condition.

� The PL/SQL IF statement has three forms: 

� IF-THEN, IF-THEN-ELSE and IF-THEN-ELSIF

PL/SQL IF-THEN Statement
� The following is the syntax of the IF-THEN 

statement:

� IF condition THEN

� sequence_of_statements;

� END IF;

PL/SQL IF-THEN Statement
� If the condition evaluates to true, the 

sequence of statements will execute. 

� If the condition is false or NULL, 

� the IF statement does nothing. 

�Note that END IF is used to close the IF 
statement, not ENDIF.

PL/SQL IF-THEN Statement



3/24/2014

2

PL/SQL IF-THEN Statement PL/SQL IF-THEN Statement

PL/SQL IF-THEN Statement PL/SQL IF-THEN-ELSE 

Statement
� This is the second form of the IF statement. 

� The ELSE keyword is added with the alternative 
sequence of statements. 

� Below is the syntax of the IF-ELSE statement.

PL/SQL IF-THEN-ELSE 

Statement
� IF condition THEN

� sequence_of_if_statements;

� ELSE

� sequence_of_else_statements;

� END IF;

� If the condition is NULL or false, the sequence of else 
statements will execute.

PL/SQL IF-THEN-ELSE 

Statement



3/24/2014

3

PL/SQL IF-THEN-ELSIF 

Statement
� PL/SQL supports IF-THEN-ELSIF statement to allow 

you to execute a sequence of statements based on 
multiple conditions. 

� The syntax of PL/SQL IF-THEN-ELSIF is as follows:

PL/SQL IF-THEN-ELSIF 

Statement
� IF condition1 THEN

� sequence_of_statements1

� ELSIF condition2 THEN

� sequence_of_statements2

� ELSE

� sequence_of_statements3

� END IF;

PL/SQL IF-THEN-ELSIF 

Statement
� Note that an IF statement can have any number of 

ELSIF clauses. 

� IF the first condition is false or NULL, the ELSIF clause 
checks second condition and so on. 

� If all conditions are NULL or false, the sequence of 
statements in the ELSE clause will execute. 

PL/SQL IF-THEN-ELSIF 

Statement
� Note that the final ELSE clause is optional so you can 

omit it. 

� If any condition from top to bottom is true, the 
corresponding sequence of statements will execute.

PL/SQL IF-THEN-ELSIF 

Statement

PL/SQL IF-THEN-ELSIF 

Statement



3/24/2014

4

PL/SQL IF-THEN-ELSIF 

Statement
PL/SQL FOR Loop
� PL/SQL FOR loop is an iterative statement that allows 

you to execute a sequence of statements a fixed 
number of times. 

� Unlike the PL/SQL WHILE loop, the number of 
iterations of the PL/SQL FOR loop is known before the 
loop starts. 

� The following illustrates the PL/SQL FOR loop 
statement syntax:

PL/SQL FOR Loop
� FOR loop_counter IN [REVERSE] lower_bound .. 

higher_bound 

� LOOP 

� sequence_of_statements; 

� END LOOP;

PL/SQL FOR Loop
� SET SERVEROUTPUT ON SIZE 1000000; 

� DECLARE 

� n_times NUMBER := 10; 

� BEGIN 

� FOR n_i IN 1..n_times LOOP 

� DBMS_OUTPUT.PUT_LINE(n_i); 

� END LOOP; 

� END; 

� /

PL/SQL FOR Loop
� SET SERVEROUTPUT ON SIZE 1000000; 

� DECLARE 

� n_times NUMBER := 10; 

� BEGIN 

� FOR n_i IN REVERSE 1..n_times LOOP 

� DBMS_OUTPUT.PUT_LINE(n_i); 

� END LOOP; 

� END;

PL/SQL WHILE Loop
� If you don’t know in advance how many times to 

execute a sequence of statements because the 
execution depends on a condition that is not fixed. 

� In such cases, you should use PL/SQL WHILE loop 
statement. 

� The following illustrates the PL/SQL WHILE LOOP 
syntax:



3/24/2014

5

PL/SQL WHILE Loop
� WHILE condition

� LOOP

� sequence_of_statements;

� END LOOP;

PL/SQL CASE Statement

� The PL/SQL CASE statement allows you to execute a 
sequence of statements based on a selector. 

� A selector can be anything such as variable, function, 
or expression that the CASE statement evaluates to a 
Boolean value. 

� You can use almost any PL/SQL data types as a 
selector except BLOB, BFILE and composite types. 

� syntax: 

� Unlike the PL/SQL IF statement, PL/SQL CASE 
statement uses a selector instead of combination of 
multiple Boolean expressions. 

� The following illustrates the PL/SQL CASE statement

� Followed by the keyword CASE is a selector. 

� The PL/SQL CASE statement evaluates the selector 
only once to decide which sequence of statements to 
execute.

� Followed by the selector is any number of the WHEN 
clause.

� If the selector value is equal to expression in the 
WHEN clause, 

� the corresponding sequence of statement after the 
THEN keyword will be executed. 

� If the selector’s value is not one of the choices covered 
by WHEN clause, 

� the sequence of statements in the ELSE clause is 
executed. 

� The ELSE clause is optional so if you omit the ESLE 
clause, PL/SQL will add the following implicit ELSE 
clause: 
� ELSE RAISE CASE_NOT_FOUND; 

� The keywords END CASE are used to terminate the 
CASE statement. 



3/24/2014

6

Example of Using PL/SQL CASE 

Statement

� The following code snippet demonstrates the PL/SQL 
CASE statement. We’ll use table employees for 
demonstration 

PL/SQL LOOP Statement

� PL/SQL LOOP is an iterative control structure that 
allows you to execute a sequence of statements 
repeatedly. 

� The simplest of LOOP consists of 

� the LOOP keyword, 

� the sequence of statements and 

� the END LOOP keywords 

� Note that there must be at least one executable 
statement between LOOP and END LOOP keywords. 

� The sequence of statements is executed repeatedly 
until it reaches a loop exits. 

� PL/SQL provides you EXIT and EXIT-WHEN 
statements to allow you to terminate a loop.



3/24/2014

7

� The EXIT forces the loop halt execution 
unconditionally and passes control to the next 
statement after keyword END LOOP.

� The EXIT-WHEN statement allows the loop complete 
conditionally.

� When the EXIT-WHEN statement is reached, the 
condition in the WHEN clause is checked. 

� If the condition is true, the loop is terminated and 
pass control to the next statement after keyword END 
LOOP. 

� If condition is false, the loop will continue repeatedly 
until the condition is evaluated to true. 

� Therefore if you don’t want to have a infinite loop you 
must change variable’s value inside loop to make 
condition true.

� The following illustrates PL/SQL LOOP with EXIT 
and EXIT-WHEN statements: 

Example of PL/SQL LOOP with EXIT 

Statement

� In this example, we declare a counter. Inside the loop 
we add 1 to the counter and print it out. 

� If the counter is 5, we use EXIT statement to terminate 
the loop. 

� Below is the code example of PL/SQL LOOP 
statement with EXIT: 

Example of PL/SQL LOOP with EXIT-

WHEN Statement

� We’ll use the same counter example above. However 
instead of using the IF-THEN and EXIT statements, 

� we use EXIT-WHEN to terminate the loop. 

� The code example is as follows: 



3/24/2014

8


