

Network Definition A network can be defined as two or more computers connected together in such a way that they can share resources. The purpose of a network is to

share resources.

- A resource may be:
- A file
- A folder
- A printer
- A disk drive
- Or just about anything else that exists on a computer.

Definitions (cont..) A network is simply a collection of computers or other hardware devices that are connected together, either physically or logically, using special hardware and software, to allow them to exchange information and cooperate.

Definitions (cont..)

• Networking is the term that describes the processes involved in designing, implementing, upgrading, managing and otherwise working with networks and network technologies.

- Hardware Sharing
- $\boldsymbol{\cdot}$ Internet Access
- Internet Access Sharing
- $\boldsymbol{\cdot}$ Data Security and Management
- Performance Enhancement and Balancing
- Entertainment

Disadvantages of Networking

- Network Hardware, Software and Setup Costs
- Hardware and Software Management and Administration Costs
- Undesirable Sharing
- Illegal or Undesirable Behavior
- Data Security Concerns

Network Classifications

- Wide Area Networks (WANs):
- A WAN is a computer network that covers a broad area (i.e., any network whose communications links cross metropolitan, regional, or national boundaries).
- Or, less formally, a network that uses routers and public communications links

Network Classifications

- Metropolitan Area Network (MAN):
 - A MAN is a network that interconnects users with computer resources in a geographic area or region larger than that covered by even a large local area network (LAN)
 - but smaller than the area covered by a wide area network (WAN).

Peer-to peer network

- Each machine can have resources that are shared with any other machine.
- There is no assigned role for any particular device, and each of the devices usually runs similar software.
- Any device can and will send requests to any other.

Client/Server Networking

- In this design, a small number of computers are designated as centralized *servers*
- and given the task of providing services to a larger number of user machines called *clients*

Network topology (cont.)

- Bus (can be both logical and physical)
- Star (physical only)
- Ring (can be both logical and physical)
- Mesh (can be both logical and physical)

Network topology (cont.)

- With a logical bus topology, messages pass through the trunk, and each workstation checks to see if the message is addressed to itself.
- If the address of the message matches the workstation's address, the network adapter copies the message to the card's on-board memory.

Network topology (cont.) it is difficult to add a workstation have to completely reroute the cable and possibly run two additional lengths of it.

- if any one of the cables breaks, the entire network is disrupted.
- Therefore, it is very expensive to maintain.

Network topology (cont.)

- Star topologies are easy to install.
- A cable is run from each workstation to the hub.
- The hub is placed in a central location in the office.
- Star topologies are more expensive to install than bus networks, because there are several more cables that need to be installed, plus the cost of the hubs that are needed.

Network topology (cont.)

- · Ring
 - Each computer connects to two other computers, joining them in a circle creating a unidirectional path where messages move from workstation to workstation.
 - Each entity participating in the ring reads a message, then regenerates it and hands it to its neighbor on a different network cable.

Network topology (cont.)

- If there are x computers, there will be (x × (x-1)) ÷ 2 cables in the network.
- For example, if you have five computers in a mesh network, it will use 5 × (5 1) ÷
 2, which equals 10 cables.
- This complexity is compounded when you add another workstation.
- For example, your five-computer, 10cable network will jump to 15 cables just by adding one more computer.

Network topology (cont.)

- It may not be able to take the direct route, but it can take an alternate, indirect route.
- It uses devices called *routers* to search multiple routes through the mesh and determine the best path.
- However, the mesh topology does become inefficient with five or more entities.

• Adva	•	logy (cont.) sadvantages of	
Topology	Advantages	Disadvantages	
Bus	Cheap. Easy to install.	Difficult to reconfigure. Break in bus disables entire network.	
Star	Cheap. Easy to install. Easy to reconfigure. Fault tolerant.	More expensive than bus.	
Ring	Efficient. Easy to install.	Reconfiguration difficult. Very expensive.	
	Simplest. Most fault tolerant.	Reconfiguration extremely difficult. Extremely expensive. Very complex.	

