
4/3/2014

1

SYSTEMS IMPLEMENTATION
TECHNIQUES

�TRANSACTION PROCESSING

�DATABASE RECOVERY

�DATABASE SECURITY

�CONCURRENCY CONTROL

TRANSACTION PROCESSING

� Def:

A Transaction is a program unit (
deletion, creation, updating etc)
whose execution preserves the
consistency of a database.

TRANSACTION PROCESSING

� To ensure that the above is met a
transaction must be

� Atomic

� Execute to completion

� Not execute at all

PROPERTIES OF A
TRANSACTION

� 4 Basic properties

� Also known as the ACID properties

� Atomicity

� Consistency

� Isolation

� Durability

PROPERTIES OF A
TRANSACTION

� atomicity

� Also known as the all nothing
property

� A transaction is an individual unit
that is either performed in its
entirety or not performed at all.

PROPERTIES OF A TRANSACTION

� Consistency

� The transaction must transform
the database from one
consistency state to another
consistency state

4/3/2014

2

PROPERTIES OF A TRANSACTION

� Isolation

� Transactions execute independently of
one another.

� Durability

� The effects of a successfully completed
transaction are permanently recorded
in the database and must never be lost
due to subsequent failure

Transactions Management

� Scenario:

� transferring money from one account to
another in one bank requires the SQL
commands:

Transactions Management

� Transferring £100 from account 1234 to
Account 4567.

� Together they comprise a single
transaction.

� Potential problem:

� Database crash !!

Transaction integrity

� Crash may leave the Database in inconsistent
state

� in the example, it would be better if neither
of the commands had been executed.

� Transaction integrity

� demands that the effects of a transaction should
be either complete or not enacted at all.

Commit/Rollback protocol

� exist to support transaction integrity

� Commit

� is when changes to a Database are made
permanent

� when a Database crashes, any changes
that have not been committed will be lost

Commit

� We can issue an explicit commit
command when both of these update
commands have been issued

4/3/2014

3

Rollback

� a mechanism to undo the effects of a
transaction.

� when issued all of the Database
changes since last commit are undone.

Rollback

� the Rollback in 4 undoes the effect of
the Update in 2

� because the Update has not been
committed

� – Suppose we issue a Commit
command

Commit/Rollback

� The Commit command in 3 makes the
change permanent

DATABASE RECOVERY

� Def:

� This is the process of restoring
the database to a consistency
state after a failure .

DATABASE RECOVERY

� Types of failure

� System failure – system entering
an undesirable state, like an
infinite loop or deadlock.

� Logic Errors – Bad programmes

� Hardware failures

Recovery Facilities

� The DBMS provides the following
facilities to recover from failure.

� Backup Mechanism -: Periodical
backup of the system

� Logging Facility -: Keeps truck of
the current state of the
transaction and the database

4/3/2014

4

Recovery Facilities

� Checkpoint Facility -: enables
update to the database to be
made permanent

� Recovery manager -: Allows the
system t o restore the database
to a consistency state following a
failure

Recovery Techniques

� Deferred updates :

� This were you use a log to record
all new transactions and the log
will be used to update the
database at a later stage.

Recovery Techniques

� Immediate updates :

� This is where updates are made
to the records immediately and
the update is kept in both the log
and the database

Recovery Techniques

� Shadow Paging

� Two page tables are maintained
during the life of a transaction

� The current page and the
shadow page

� When the transaction starts the
two tables are the same

Recovery Techniques

� The shadow page is not changed and
is used to restore the database in the
event of a failure

� The current page is used to record all
updates to the database

� When the transaction completes the
current page becomes the shadow
page and the shadow page is
garbage collected.

DATABASE SECURITY

� DEF:

� Mechanism that protects the
database against intentional or
accidental threats.

� It encompasses hardware ,
software , people and data

4/3/2014

5

DATABASE SECURITY

� It is considered in relation to the
following situations:

� Theft

� Loss of Confidentiality

� Loss of privacy

� Loss of Integrity

� Loss of Availability

THEFT/FRAUD

� This the acquisition of data illegally

Confidentiality

� Refers to the need to maintain
secrecy over the data usually that
which is critical to an organization

Privacy

� Refers to the need to protect data
about individuals , loss would lead
to legal action taken against the
organization

Integrity

� Loss results in invalid and
corrupted data

Availability

� Data must be available to
authorized persons at an
appropriate time (when as
required)

� Loss leads to the inability to access
data.

4/3/2014

6

Database Security

� Measures that can be used to
safeguard databases from
anticipated threats

� Authorization

� Authentication

� Views or subschema

� encryption

Authentication

� Mechanisms that determines
whether a user is s/he what s/he
claims to be

� Establishing proof of identity

� Physical traits

� Pin codes

� Cards etc

Authorization

� Also known as Access control

� This is the granting of rights and
privileges that enables a user to
have access to the system

Views or subschema

� A view is a virtual table that does
not exist in the database but is
produced upon request by
particular user

Encryption

� This is the encoding of the data by
a special algorithm that renders the
data unreadable by any program
without the decryption key.

CONCURRENCY CONTROL

� Concurrency

� The process describing two or
more users accessing the
database at the same time and
transactions are interleaved.

� Undesirable results may occur,
hence the need for concurrency
control

4/3/2014

7

Concurrency problems

� The Lost Update Problem

� • The following situation might arise:

� 1) TA reads Account record
1234. Value of balance is 150.

� 2) TB reads Account record
1234. Value of balance is 150.

� 3) TA increases to 250
(150+100).

The Lost Update Problem

� 4) TB increases to 350 (150+200).
� 5) TA writes back balance of 250.
� 6) TB writes back balance of 350.

� • The account should have a balance
of 450, not 350.

� • The update performed by TA has
been lost

The uncommitted dependency

� • When does it occur?
� Another transaction may start
using data that

has not yet been committed.
� – Effects: the 2nd transaction will
use false information.

The uncommitted dependency

� – Example
� TA
� Update Accounts
� Set Balance = Balance - 100
� Where Accno = 1234;
� If Balance < 0.00 Then Rollback Else Commit;
� TB
� Delete from Accounts
� Where Balance < 0.00;

The uncommitted dependency

� • Example

� 1) TA retrieves Account 1234.
Value of balance is 50.

� 2) TA reduces balance by
100. Leaving it as -50.

� 3) TA writes back value of -
50.

uncommitted dependency

� 4) TB retrieves Account 1234.
Balance is -50.

� 5) TB deletes Account 1234 as it
has negative balance.

� 6) TA rolls back update. Too late!
the account has been deleted

�TB used uncommitted data.

4/3/2014

8

Inconsistent Analysis

� A transaction accesses records while are

they being updated by another
transaction.

� Example

� 2nd transaction transfers money from
one account to another.

� Hence, should have no effect on TA
result.

Inconsistent Analysis

� TA

� Select Sum (Balance)
� From Account;

� TB

� Update Accounts

� Set Balance = Balance - 100 Where Accno = 3;

� Update Accounts

� Set Balance = Balance + 100 Where Accno = 1;

Inconsistent Analysis

� 2nd transaction transfers money
from one account to another.

� Hence, should have no effect on
TA result.

Locking

� How to avoid all previous problems?

� Lock the object to prevent access by other
transactions

� A transaction releases the object when it
finishes with it

� Other transactions need to queue until the
object is released

� The lock could be shared or exclusive

Shared Locks

� A Shared lock S is placed on an object that is
being accessed for read only purposes

� many S locks may be placed

� an X lock must wait

4/3/2014

9

Exclusive Locks

� An exclusive lock X, when an object is
being altered

� No other lock may be placed

� All transactions must wait

The Locking Protocol

� Relate this to SQL:

� Many ‘read-only’ operations (e.g.
Select)

� One ‘update’ operation (e.g. Delete)

The Locking Protocol

� The Lost Update Problem:

� TA will place an X lock on Account
1234 before it starts update

The Locking Protocol

� The uncommitted dependency:

� TA will lock TB out from Account
1234 until it has completed the
rollback

The Locking Protocol

� The inconsistent analysis:

� TA will place an S lock on all of the
account records.

Problems with Locking

� Appropriate locking can guarantee
correctness, However, it also introduces
potential undesirable effects:

� Deadlock

� No transactions can proceed; each waiting
on lock held by another.

4/3/2014

10

� Starvation

� One transaction is permanently "frozen
out" of access to data.

� reduced performance

� Locking introduces delays while waiting
for locks to be released.

Two-Phase Locking

� A transaction follows a 2 phase
locking protocol if all operations
precede the first unlock operations
in the transaction.

� According to this protocol every
transaction can be divided into two
phases

Two-Phase Locking

� Growing phase

� A transaction acquires all the
locks needed but can not release
any locks

� Shrinking Phase

� A transaction releases its locks
but cannot acquire any locks

