
1/13/2022

1

Types of parallelism in Software

 Bit-level parallelism

 Instruction-level parallelism

 Task parallelism

Data Parallelism

1/13/2022

1

Bit-level parallelism

 From the advent of very-large-scale integration
(VLSI) computer-chip fabrication technology in the
1970s until

 about 1986, speed-up in computer architecture was
driven by doubling computer word size—the
amount of

 information the processor can manipulate per cycle.

1/13/2022

2

Bit-level parallelism

 Increasing the word size reduces the number of
instructions the processor must execute to perform
an operation on variables.

 For example, where an 8-bit processor must add
two 16-bit integers, it requires two instructions to

 complete a single operation, where a 16-bit
processor would be able to complete the operation
with a single instruction.

1/13/2022

3

Bit-level parallelism

 Historically, 4-bit microprocessors were replaced
with 8-bit, then 16-bit, then 32-bit microprocessors.
The 32-bit processors, have been a standard in
general-purpose computing.

 Not until recently, with the advent of x86-64
architectures, have 64-bit processors become
commonplace.

1/13/2022

4

Instruction-level parallelism

 A computer program, is a stream of instructions
executed by a processor.

 These instructions can be re-ordered and combined
into groups which are then executed in parallel.

 This is known as instruction-level parallelism.

 Advances in instruction-level parallelism dominated
computer architecture from the mid-1980s until the
mid-1990s.

1/13/2022

5

Instruction-level parallelism

 Modern processors have multi-stage instruction
pipelines.

 Each stage in the pipeline corresponds to a
different action the processor performs on that
instruction in that stage;
 a processor with an N-stage pipeline can have up to N

different instructions at different stages of completion.

 The Pentium 4 processor has a 35-stage pipeline.

1/13/2022

6

1/13/2022

2

Pipelining

 Pipelining is an implementation technique
where multiple instructions are overlapped in
execution

 The computer pipeline is divided in stages

 Each stage completes a part of an instruction in
parallel

 The stages are connected one to the next to
form a pipe - instructions enter at one end,
progress through the stages, and exit at the
other end 1/13/2022

7

Pipelining

 The canonical example of a pipelined
processor is a RISC processor, with five stages:
 instruction fetch, decode, execute, memory access,

and write back

1/13/2022

8

RISC processor

1/13/2022

9

Pipelining

 In addition to instruction-level parallelism, some
processors can issue more than one instruction at a
time.

 These are known as superscalar processors.

 Instructions can be grouped together only if there is
no data dependency between them

1/13/2022

10

Simple superscalar pipeline.

1/13/2022

11

Simple superscalar pipeline

 A five-stage pipelined superscalar processor is
capable of issuing two instructions per cycle.

 It can have two instructions in each stage of the
pipeline, for a total of up to 10 instructions (shown
in green) being simultaneously executed. (IF =
Instruction Fetch, ID = Instruction Decode, EX =
Execute, MEM = Memory access, WB = Register
write back, i = Instruction number, t = Clock cycle
[i.e., time])

1/13/2022

12

1/13/2022

3

Data Parallelism

 Data Parallelism means concurrent execution of
the same task on each multiple computing core.

 Let’s take an example, summing the contents of
an array of size N.

 For a single-core system, one thread would
simply sum the elements [0] . . . [N − 1].

1/13/2022

13

Data Parallelism

 For a dual-core system, however, thread A,
running on core 0, could sum the elements [0] . .
. [N/2 − 1] and while thread B, running on core
1, could sum the elements [N/2] . . . [N − 1].

 So the Two threads would be running in
parallel on separate computing cores.

1/13/2022

14

Properties of Data Parallelism

 Same task are performed on different subsets of
same data

 Synchronous computation is performed.

 As there is only one execution thread operating on
all sets of data, so the speedup is more.

 Amount of parallelization is proportional to the
input size.

 It is designed for optimum load balance on
multiprocessor system

1/13/2022

15

Task parallelism

 Task parallelism is the characteristic of a parallel
program that "entirely different calculations can be
performed on either the same or different sets of
data".

 This contrasts with data parallelism, where the same
calculation is performed on the same or different
sets of data.

 The word task in task parallelism is used in the
general sense of an activity or job.

1/13/2022

16

Task parallelism

 Task Parallelism means concurrent execution of the
different task on multiple computing cores.

 Consider the example above, an example of task
parallelism might involve two threads, each
performing a unique statistical operation on the
array of elements.

 Again The threads are operating in parallel on
separate computing cores, but each is performing a
unique operation.

1/13/2022

17

Task parallelism Properties

 Different task are performed on the same or
different data.

 Asynchronous computation is performed.

 As each processor will execute a different thread or
process on the same or different set of data, so
speedup is less.

 Amount of parallelization is proportional to the
number of independent tasks is performed.

 Here, load balancing depends upon on the e
availability of the hardware and scheduling
algorithms. 1/13/2022

18

1/13/2022

4

SHARED MEMORY and SHARED
VARIABLES

 Depending on whether 2 or more processors can
gain access to the same memory location
simultaneously,

 we have 4 subclasses of shared memory computers

1/13/2022

19

SHARED MEMORY and SHARED
VARIABLES

 Exclusive Read, Exclusive Write (EREW) SM
Computers

 Access to memory locations is exclusive i.e. no 2
processors are allowed to simultaneously read from or
write into the same location.

 Concurrent Read, Exclusive Write (CREW) SM
Computers

 Multiple processors are allowed to read from the same
location but write is still exclusive. .i.e. no 2 processors
are allowed to write into the same location
simultaneously

1/13/2022

20

SHARED MEMORY and SHARED
VARIABLES

 Exclusive Read, Concurrent Write (ERCW) SM
Computers

 Multiple processors are allowed to write into the
same memory location but read access remains
exclusive.

 Concurrent Read, Concurrent Write (CRCW) SM
Computers

 Both multiple read and multiple write privileges are
allowed.

1/13/2022

21

SHARED MEMORY and SHARED
VARIABLES

 Allowing concurrent read access to the same
address should pose no problems (except perhaps
to the result of a calculation)

 Conceptually, each of the several processors
reading from that location makes a copy of its
contents and stores it in its own register (RAM)

1/13/2022

22

SHARED MEMORY and SHARED
VARIABLES

 Problems arise however, with concurrent write
access.

 If several processors are trying to simultaneously
store (potentially different) data at the same
address, which of them should succeed ?

 i.e. we need a deterministic way of specifying the
contents of a memory location after a concurrent
write operation.

1/13/2022

23

SHARED MEMORY and SHARED
VARIABLES

 Some ways of resolving write conflicts include :-
 Assign priorities to the processors and accept value

from highest priority processor

 All the processors are allowed to write, provided that
the quantities they are attempting to store are equal,
otherwise access is denied to ALL processors.

1/13/2022

24

1/13/2022

5

SHARED MEMORY and SHARED
VARIABLES

 It is only feasible to allow P processors to access P
memory locations simultaneously for relatively small
P (< 30)

 Usually because of the cost of the communication.

1/13/2022

25

Interconnection Networks

 We have seen that one way for processors to
communicate data is to use a shared memory and
shared variables.

 However this is unrealistic for large numbers of
processors.

 A more realistic assumption is that each processor
has its own private memory and data
communication takes place using message passing
via an INTERCONNECTION NETWORK.

1/13/2022

26

Interconnection Networks

 The interconnection network plays a central role in
determining the overall performance of a
multicomputer system.

 If the network cannot provide adequate
performance, for a particular application, nodes
will frequently be forced to wait for data to arrive.

 Some of the more important networks include

1/13/2022

27

Interconnection Networks

 Fully connected or all-to-all

 Mesh

 Rings

 Hypercube

 X - Tree

 Shuffle Exchange

 Butterfly

 Cube Connected Cycles

1/13/2022

28

Interconnection Networks -dynamic

 Multi – Stage Interconnection network

 Cross – Bar Interconnection Network

1/13/2022

29

Fully connected or all-to-all

 This is the most powerful interconnection network (
topology): each node is directly connected to ALL
other nodes.

1/13/2022

30

1/13/2022

6

Fully connected or all-to-all

 Each node has N-1 connections (N-1 nearest
neighbours)

 giving a total of N(N-1) / 2 connections for the
network.

 Even though this is the best network to have,

 the high number of connections per node mean this
network can only be implemented for small values
of N.

1/13/2022

31

Mesh (Torus)

 In a mesh network, the nodes are arranged in a k
dimensional lattice of width w, giving a total of
w^k nodes.

 Usually k=1 (linear array) or k=2 (2D array) e.g.
ICL DAP.

 Communication is allowed only between
neighbouring nodes.

 All interior nodes are connected to 2k other nodes.

1/13/2022

32

Mesh (Torus)

1/13/2022

33

Mesh (Torus)

1/13/2022

34

Mesh (Torus)

1/13/2022

35

Rings

 A simple ring is just a linear array with the end
nodes linked.

1/13/2022

36

1/13/2022

7

Rings

 It is equivalent to a 1D mesh with wraparound
connections.

 One drawback to this network is that some data
transfers may require N/2 links to be traversed e.g.
A and B above (3).

 This can be reduced by using a chordal ring

 This is a simple ring with cross or chordal links
between nodes on opposite sides

1/13/2022

37

Rings

1/13/2022

38

Hypercube Connection (Binary n-
Cube)

 Hypercube networks consist of N = 2^k nodes

 arranged in a k dimensional hypercube.

 The nodes are numbered 0 , 1,2^k -1

 and two nodes are connected if their binary labels
differ by exactly one bit

1/13/2022

39

1/13/2022

40

Hypercube Connection (Binary n-
Cube)

1/13/2022

41

Hypercube Connection (Binary n-
Cube)

 K dimensional hypercube is formed by combining
two k-1 dimensional hypercubes and connecting
corresponding nodes i.e. hypercubes are recursive.

 each node is connected to k other nodes i.e. each is
of degree k

1/13/2022

42

1/13/2022

8

Metrics for Interconnection Networks

 Metrics provide a framework to compare and
evaluate interconnection networks.

 The main metrics are:
 Network connectivity

 Network diameter

 Narrowness

 Network expansion increments

1/13/2022

43

Network Connectivity

 Network nodes and communication links sometimes
fail and must be removed from service for repair.

 When components do fail the network should
continue to function with reduced capacity.

 Network connectivity measures the resiliency of a
network and

 its ability to continue operation despite disabled
components

1/13/2022

44

Network Connectivity

 i.e. connectivity is the minimum number of nodes or
links that must fail to partition the network into two
or more disjoint networks

 The larger the connectivity for a network the better
the network is able to cope with failures.

1/13/2022

45

Network Diameter

 The diameter of a network is the maximum
internode distance

 i.e. it is the maximum number of links that must be
traversed to send a message to any node along a
shortest path.

 The lower the diameter of a network the shorter the
time to send a message from one node to the node
farthest away from it.

1/13/2022

46

Narrowness

 This is a measure of congestion in a network and is
calculated as follows:

 Partition the network into two groups of processors
A and B

 where the number of processors in each group is Na
and Nb and assume Nb < = Na.

 Now count the number of interconnections between
A and B call this I.

1/13/2022

47

Narrowness

 Find the maximum value of Nb / I for all
partitionings of the network.

 This is the narrowness of the network.

 The idea is that if the narrowness is high (Nb > I)
then if the group B processors want to send
messages to group A, congestion in the network will
be high (since there are fewer links than processors
)

1/13/2022

48

1/13/2022

9

Network Expansion Increments

 A network should be expandable i.e.

 it should be possible to create larger and more
powerful multicomputer systems by simply adding
more nodes to the network.

 For reasons of cost, it is better to have the option of
small increments since this allows you to upgrade
your network to the size you require (i.e. flexibility
) within a particular budget.

1/13/2022

49

Network Expansion Increments

 E.g. an 8 node linear array can be expanded in
increments of 1 node but a 3 dimensional
hypercube can be expanded only by adding
another 3D hypercube. (i.e. 8 nodes)

1/13/2022

50

Other metrics

 Bisection bandwidth
 the speed with which data from two halves of the

network can be transposed across an arbitrary cut

 Cost
 Proportional to the number of communication links

1/13/2022

51

1/13/202252

