Interconnection Networks

\square Butterfly

\square Cube connected Cycle
\square Tree and Xtree
\square Shuffle exchange
\square CrossBar
\square Multi Stage

Butterfly Network

-A butterfly network consists of $(\mathbf{K}+\mathbf{1}) \mathbf{2}^{\wedge} \mathbf{k}$ nodes divided into $\mathbf{K + 1}$ Rows, or Ranks.

- Let node (i, j) refer to the j_{t} node in the i_{t} Rank. Then for $\mathrm{i}>0$ node (i, j) is connected to 2 nodes in Rank $\mathrm{i}-1$, node ($\mathrm{i}-1, \mathrm{j}$) and node ($\mathrm{i}-1, \mathrm{M}$), where M is the integer found by inverting the $\mathrm{i}_{\text {th }}$ most significant bit of j .
- Note that if node (I, j) is connected to node $(\mathrm{i}-1, \mathrm{M})$, then node $(1, \mathrm{M})$ is connected to node ($\mathrm{i}-1, \mathrm{j}$). This forms a butterfly pattern.

Network diameter=2K
\square Bisection Width $=2 \wedge$ K

Example of a Butterfly Network

Here is a Butterfly Network for $\mathbf{K}=\mathbf{3}$

Cube Connected Cycles

CCC is an unidirected graph, formed by replacing each vertex of a hypercube graph by a cycle
CCC of order n (denoted CCCn) can be defined as a graph formed from a set of $n 2^{n}$ nodes, indexed by pairs of numbers (x, y) where $0 \leq x<2^{n}$ and $0 \leq y$ <n

- Each such node is connected to three neighbors: (x, $(y+1) \bmod n),(x,(y-1) \bmod n)$, and $(x \bigoplus 2 y, y)$, where " \bigoplus " denotes the bitwise exclusive or operation on binary numbers

3/11/2024

Cube Connected Cycles Cont.

- An n-cube network has n 2 n nodes where two nodes are connected if the binary representation of their addresses differs by one and only one bit
- Each node can be identified by a pair (x, y) of integers, where x is the cycle number (the node number in the original hypercube) and y is the node number within the cycle
- This same numbering scheme is applicable to the representation below 3/11/2024

Tree Topology

Nodes at one level can only connect to nodes in adjacent levels
\square A node may have only one parent even though it may give rise to several children.
\square Nodes that do not have any children are called 'terminal nodes'
\square The Figures below illustrates both the binary and ternary trees.
\square Advantage
\square The advantage of cube-connected cycles is that
the node's degree is always 3, independent of the
value of n
\square Disadvantage of CCC
\square CCC tends to suffer from considerable
performance degradation when fault arises

Binary Tree

11

${ }^{11}$
3/11/2024
'Trees topologies' are hierarchical structures that have some resemblance to natural trees.
\square Its starts with a node at the top called the root.
\square This node is connected to other nodes by 'edges' or 'branches'.
\square The nodes may spawn further nodes forming a multilayered structure.

Tree Topology

Ternary Tree

Tree Topology

\square By examining the figures it can be seen that there is only one path between any two nodes.
\square A message from one terminal node to another terminal node has to be routed back up the tree to the first node that is common to both the sender and the receiver.

Once the message arrives at the common parent it can then travel back down the tree to the receiving node.

Tree Topology

\square An important step in finding the message path involves finding the first node that is common to both sender and receiver
\square This can be done by generating two lists of successive parents all the way up to the root.
\square One list for the sender and one for the receiver
\square The parent of the current node can be found by dividing the address by two and taking the modulus

Message Passed from Node 4 to Node 10 in a Binary Tree

Path from Node to Root

	Sender		Receiver	
	Binary	Decimal	Binary	Decimal
	0100	4	1010	10
	0010	2	0101	5
	0001	1 (root)	0010	2
17			0001	1 (root)

Tree Topology

Path finding can be illustrated with reference to figure 3.
Let node four be the sender and node ten the receiver.
\square The list of successive parents will be as follows:

X-Tree Topology

- It can be seen that the first node to appear in both lists is 2 .
-The path is generated by traversing down the sender list as far as the common node (in this case 2),
- and then up the receiver list from the common node to the top.
- A disadvantage of this topology is that there is no alternative route if a necessary link fails.

3/11/2024
18

X-Tree Topology

\square One way to alleviate this communication problem is to add links between branches at the same level.
The resulting structure is called an ' X-tree'.
\square X-tree is an extended tree topology as shown in figure 4 below:

An X-Tree topology

20
20

SHUFFLE EXCHANGE

-Consider a set of N processors, numbered $\mathrm{P}_{0}, \mathrm{P}_{1}$, ... $\mathrm{P}_{\mathrm{N}-1}$

- Perfect shuffle connects processors P_{i} and P_{j} by a one-way communications link,
-If $\mathrm{j}=2^{*} \mathrm{i}$ for $0<=\mathrm{i}<=\mathrm{N} / 2-1$ or $\mathrm{j}=2^{*} \mathrm{i}+1$ N otherwise.
-See below an example for $\mathrm{N}=8$ where arrows represent shuffle links and solid lines represent exchange links.

SHUFFLE EXCHANGE

X-Tree Topology

\square Like the ring, it uses direct connections between processors; each having three connections.
\square There is only one unique path between any pair of processors.
\square The X-tree therefore avoids overlap whenever it is possible without allowing the tree to degenerate.
\square Therefore the Extended-tree (X-tree) topology provides availability of communication between nodes if one link fails.

SHUFFLE EXCHANGE

\square In other words, perfect shuffle connects processor I with ($2 *$ I modulo ($\mathrm{N}-1$)), with the exception of the processor $\mathrm{N}-1$ which is connected to itself.
Having trouble with this logic
\square Consider the following:

SHUFFLE EXCHANGE

\square Let's represent numbers i and j in binary.
\square If j can be obtained from i by a circular shift to the left, then P_{i} and P_{i} are connected by oneway communications link, viz.:

Architecture

\square A crossbar switched network is a single stage network built with unary (single) switches at the cross point.
\square At each intersection is a cross point - a switch that can be opened or closed
\square It is an assembly of switches (switching nodes) between multiple inputs and multiple outputs arranged in the form of a matrix.
\square If a crossbar has ' n ' inputs and ' n ' outputs, then it has a matrix with n^{*} cross points.
\square At each cross point is a switch, when closed connects one of the ' n ' inputs to one of ' n ' outputs.

SHUFFLE EXCHANGE

Architecture

\square It is a non-blocking network that allows a multiple input/ output connection pattern to be achieved simultaneously.
\square The cross bar switch provides all possible permutations

Crossbar Interconnection

A dynamic switch-based network, where all processors have dedicated buses directly connected to all memory blocks and can provide simultaneous connections among all its inputs and all its outputs.

Crossbar Interconnection

\square Example: sending a message from input 6 to output 5:
\square Source-> switchbox $(6,1)->(6,2) \ldots . .(6,5)$
$->(4,5)->(3,5) \ldots . .->$ destination.
A processor can access a particular memory block as long as it has highest
priority to that memory block. If some other processor gets highest priority for that particular memory block, the processor, which is currently accessing the memory block gets its connection disconnected. It will have to wait until it gets

[^0]
Crossbar Interconnection

Multi Stage Interconnection Networks

\square Some factors to be considered with regards to a

Crossbar:

\square Scalability: This refers to the change in performance by increasing or decreasing the number of memory modules.
Reliability: This refers to the impact on the system when a switch, wire, or any other part of the network breaks down.
Latency: It refers to the time required by the processor to access memory

A network formed by interconnecting a set of nodes through a switching fabric.
\square Nodes can either be programmable computers or memory blocks.
Switching fabric consists of a set of switches interconnected to form a topology with defined connection points for the nodes.

Advantages of Cross-bar Switch networks
\square Every node is connected to all others (nonblocking).
\square It provides full connectivity.
\square Low latency and high throughput
\square Highly useful in multiprocessor systems, as all processors can send memory requests independently and asynchronously.
\square Potential for speed: in one clock a connection can be made between a source and destination. 3/11/2024

Multi Stage Interconnection Networks

\square Switches are organized in stages, thus the name multistage
\square A MIN normally connects N input to N outputs and is referred to as $\mathrm{N} x \mathrm{~N}$ MIN.
\square The parameter N is called the size of the network.

Disadvantages of Cross-bar Switch networks
-Complexity increases with an increase in number of inputs (processors) or number of outputs (memory)
-Too expensive for a large of number of processors.

Multi Stage Interconnection Networks

\square multistage interconnection networks as: are a class of high-speed computer networks usually composed of processing elements (PEs) on one end of the network and memory elements (MEs) on the other end, connected by switching elements (SEs).
\square The switching elements themselves are usually connected to each other in stages, hence the name.
$3 / 11 / 2024$

In single stage networks data may have to pass through the switching elements several times before reaching the final destination.
In Multistage one pass is sufficient for data to traverse from input to output.

HOW ARE MINs CONSTRUCTED?

CONSTRUCTION

If we cascade(arrange in a series or sequence) single staged networks together, they form a completely connected multistage interconnection network and data is no longer required to circulate the network but instead is sent from input side to output side.

HOW ARE MINS CONSTRUCTED

Inputs and outputs are connected in a 1 to 1 manner.
\square The source node generates a tag, which is binary equivalent of the destination.
\square At each switch, the corresponding tag bit is checked.
If the bit is o, the input is connected to the upper output.
\square If it is 1 , the Input is connected to the lower output.

ADVANTAGES OF MINS

\square Multistage interconnection networks (MINs) are used in multiprocessing systems to provide cost-effective, high bandwidth communication between processors and/or memory modules.
Multistage interconnection networks attempt to reduce cost and decrease the path length.

DISADVANTAGES

\square The most obvious problem of MINs is the blocking problem and impossibility of the implementation of appropriate routing algorithms since there is only a unique path between every input-output pair.
\square The switch box is the basic component of the network, the cost of the network (in hardware terms) is measured by the number of switch boxes required.

[^0]: the highest priority for accessing that block again

