
1/13/2022

1

Parallel Algorithm Construction

 Parallel algorithms for MIMD machines can be
divided into 3 categories,

 these are :

Pipelined Algorithms / Algorithmic
Parallelism

Partitioned Algorithms / Geometric
Parallelism

Asynchronous / Relaxed Algorithms

1

1/13/2022

Pipelined Algorithms / Algorithmic
Parallelism

 A pipelined algorithm is an ordered set of (
possibly different) processes in which the
output of each process is the input to its
successor.

 The input to the first process is the input to the
algorithm

 The output from the last process is the output of
the algorithm.

2

1/13/2022

Pipelined Algorithms

 Typically each processor forms part of a
pipeline and

 performs only a small part of the algorithm.

 Data then flows through the system (pipeline)
being operated on by each processor in
succession.

3

1/13/2022

Example

 Say it takes 3 steps A, B & C to assemble a widget
and assume each step takes one unit of time

 Sequential widget assembly machine:

 Spends 1 unit of time doing step A followed by 1
unit of time doing step B, followed by 1 unit of time
doing step C

 So a sequential widget assembler produces 1
widget in 3 time units, 2 in 6 time units etc.
i.e. one widget every 3 units

4

1/13/2022

Example

 Pipelined widget assembly machine

Say we use a 3 segment pipeline where
each of the subtasks (A, B or C) is assigned
to a segment

i.e. the machine is split into 3 smaller
machines; one to do step A, one for step B
and one for step C and which can operate
simultaneously.

5

1/13/2022

Example

 The first machine performs step A on a new
widget every time step and

 passes the partially assembled widget to the
second machine which performs step B.

 This is then passed onto the third machine to
perform step C

6

1/13/2022

1/13/2022

2

Example

 This produces the first widget in 3 time units (as
the sequential machine),

 but after this initial startup time one widget
appears every time step.

 i.e. the second widget appears at time 4
the third widget appears at time 5 etc.

7

1/13/2022

Example
8

1/13/2022

So the final result looks like this
9

1/13/2022

Pipelined Algorithms

 In general

if L is the number of steps to be performed

and T is the time for each step

and n is the number of items (widgets)

then Time Sequential = LTn

and Time Parallel = [L + n-1]T

10

1/13/2022

Pipelined Algorithms

 T = 1, L = 100, n = 10^6

 then Tseq = 10^8 and Tpipe = 100 + 10^6 - 1 =
10^6 + 99

 Speedup = Tseq / Tpipe = 10^8 / (10^6 +99) =
100

 i.e. 100 fold increase in speed.

 In general as n tends to infinity speedup tends to L.

11

1/13/2022

Geometric Parallelism / Partitioned
Algorithms

 These algorithms arise when there is a natural way
to decompose the data set into smaller "chunks" of
data,

 which are then allocated to individual processors.

 Thus each processor contains more or less the same
code but operates on a subset of the total data.

12

1/13/2022

1/13/2022

3

Partitioned Algorithms

 The solution to these subproblems are then
combined to form the complete solution.

 Depending on the algorithm being solved this
combining of solutions usually implies

 communication synchronization among the
processors.

 Synchronization means constraining a particular
ordering of events.

13

1/13/2022

Example

 if data needs to be communicated between
processors after each iteration of a numerical
calculation then this implies synchronization between
processes.

 Thus partitioned algorithms are sometimes called
synchronous algorithms

14

1/13/2022

Partitioned Algorithms

 To illustrate the difference between pipelined
and partitioned algorithms consider the
following:

Say an algotithm consists of 4 parts A, B, C
and D and

this algorithm is to operate on a data set E
consisting of 4 subsets E1, E2 , E3 and E4

(e.g. divide up matrix into submatrix)

15

1/13/2022

Partitioned Algorithms

 The pipelined algorithm would consist of 4
processors performing A, B, C, or D.

 The complete data set would then pass through all 4
processors.

16

1/13/2022

Partitioned Algorithms

 However in the partitioned algorithm the four
processors all perform A, B, C and D but only on a
subset of the data

17

1/13/2022

Partitioned Algorithms

 i.e. In pipelined algorithms the algorithm is
distributed among the processors whereas in
partitioned algorithms the data is distributed
among the processors.

18

1/13/2022

1/13/2022

4

Example

 Say we want to calculate Fi = cos(sin e^sqr(xi)) for
x1, x2 ,....x6 using 4 processors.

 Pipelined Version

19

1/13/2022

Example

 F1 is produced in 4 time units
F2 is produced at time 5
i.e. time = 4 + (6-1) = 9 units
==> SPEEDUP = 24 / 9 = 2.6

20

1/13/2022

Example

 Partitioned Version

 This time each processor performs the complete
algorithm i.e. cos(sin e^sqr(x)) but on its own data.

21

1/13/2022

Example

 i.e. time = 8 units
==> SPEEDUP = 24 / 8 = 3
==> EFFICIENCY = 75%

 Efficiency is calculated by dividing speedup by
number of processors

 E=S/n

22

1/13/2022

Asynchronous / Relaxed Parallelism

 In relaxed algotithms there is no explicit
dependency between processes,

 as occurs in synchronized algorithms.

 Instead relaxed algorithms never wait for input.

 If they are ready they use the most recently
available data

23

1/13/2022

Relaxed Parallelism

 To illustrate this consider the following.

 Say we have two processors A and B. A produces a
sequence of numbers a1, a2 ..

 B inputs ai and performs some calculation F which
uses ai.

 Say that B runs much faster than A.

24

1/13/2022

1/13/2022

5

Example

 Synchronous Operation

 A produces a1 passes it to B which calculates
F1;

 A produces a2 passes it to B which calculates
F2;

 i.e. B waits for A to finish (since B is faster than
A) etc..

25

1/13/2022

Example

 Asynchronous Operation
 A produces a1 passes it to B which calculates F1
 but now A is still in the process of computing a2
 so instead of waiting B carries on and calculates F2

(based on old data i.e. a1 and therefore may not
be the same as F2 above)and

 continues to calculate F using the old data until a
new input arrives

 e.g. Fnew = Fold + ai

26

1/13/2022

Relaxed Parallelism

 The idea in using asynchronous algorithms is that all
processors are kept busy and never remain idle
(unlike synchronous algorithms) so speedup is
maximized.

 A drawback is that they are difficult to analyse (
because we do not know what data is being used)
and

 also an algorithm that is known to work (e.g.
converge) in synchronous mode may not work (e.g
diverge) in asynchronous mode.

27

1/13/2022

Relaxed Parallelism

 Consider the Newton Raphson iteration for solving

 F (x) = 0

 where F is some non-linear function

 i.e. Xn+1 = Xn - F(Xn)/F'(Xn)......(1)
generates a sequence of approximations to the
root, starting from a value X0.

28

1/13/2022

Relaxed Parallelism

 Say we have 3 processors

 P1 : given x, P1 calculates F (x) in time t1, units and
sends it to P3

 P2 :given y, P2 calculates F'(y) in time t2 units and
sends it to P3

 P3 : given a, b, c, P3 calculates d = a - b/c in time
t3 units;

 if | d-a | > Epsilon then d is sent to P1 and P2
otherwise d is output.

29

1/13/2022

Example

 Serial Mode

P1 computes F(Xn)

then P2 computes F'(Xn)

then P3 computes Xn+1 using (1)

So time per iteration is t1 + t2 + t3

If k iterations are necessary for convergence
then total time is k (t1 + t2 + t3)

30

1/13/2022

1/13/2022

6

Example

 Synchronous Parallel Mode.
 P1 and P2 compute F(Xn) and F'(Xn) simultaneously and

 when BOTH have finished the values F(Xn) and F'(Xn)
are used by P3 to compute Xn+1

 Time per iteration is max(t1, t2) + t3

 Again k iterations will be necessary so total time is k
[max(t1, t2) + t3]
X1 = X0 - F(X0)/F'(X0) ...etc

31

1/13/2022

Relaxed Parallelism

 Asynchronous Parallel Mode
 P1 and P2 begin computing as soon as a new input

value is made available by P3 and they are ready to
receive it,

 P3 computes a new value using (1) as soon as EITHER
P1 OR P2 provide a new input

 i.e. (1) is now of the form

 Xn+1 = Xn - F(SXi)/F'(Xj)

32

1/13/2022

