Parallel Algorithm Construction

\square Parallel algorithms for MIMD machines can be divided into 3 categories,
\square these are :
\square Pipelined Algorithms / Algorithmic Parallelism
\square Partitioned Algorithms / Geometric
Parallelism
\square Asynchronous / Relaxed Algorithms

Pipelined Algorithms

\square Typically each processor forms part of a pipeline and
\square performs only a small part of the algorithm.
\square Data then flows through the system (pipeline) being operated on by each processor in succession.

Example

Pipelined widget assembly machine

\square Say we use a 3 segment pipeline where each of the subtasks (A, B or C) is assigned to a segment
\square i.e. the machine is split into 3 smaller machines; one to do step A, one for step B and one for step C and which can operate simultaneously.

Pipelined Algorithms / Algorithmic Parallelism

\square A pipelined algorithm is an ordered set of (possibly different) processes in which the output of each process is the input to its successor.
\square The input to the first process is the input to the algorithm
\square The output from the last process is the output of the algorithm.

Example

\square Say it takes 3 steps $A, B \& C$ to assemble a widget and assume each step takes one unit of time
\square Sequential widget assembly machine:
\square Spends 1 unit of time doing step A followed by 1 unit of time doing step B, followed by 1 unit of time doing step C
\square So a sequential widget assembler produces 1 widget in 3 time units, 2 in 6 time units etc. i.e. one widget every 3 units

Example

\square The first machine performs step A on a new widget every time step and
\square passes the partially assembled widget to the second machine which performs step B.
\square This is then passed onto the third machine to perform step C

Example

\square This produces the first widget in 3 time units (as the sequential machine),
\square but after this initial startup time one widget appears every time step.
\square i.e. the second widget appears at time 4 the third widget appears at time 5 etc.

Pipelined Algorithms

\square In general

- if L is the number of steps to be performed \square and T is the time for each step
\square and n is the number of items (widgets)
\square then Time Sequential $=L T n$
\square and Time Parallel $=[L+n-1] T$

Geometric Parallelism / Partitioned Algorithms

\square These algorithms arise when there is a natural way to decompose the data set into smaller "chunks" of data,
\square which are then allocated to individual processors.
\square Thus each processor contains more or less the same code but operates on a subset of the total data.
\square

Partitioned Algorithms

\square The solution to these subproblems are then combined to form the complete solution.
\square Depending on the algorithm being solved this combining of solutions usually implies
\square communication synchronization among the processors.
\square Synchronization means constraining a particular ordering of events.

Partitioned Algorithms

\square To illustrate the difference between pipelined and partitioned algorithms consider the following:
\square Say an algotithm consists of 4 parts A, B, C and D and
\square this algorithm is to operate on a data set E consisting of 4 subsets E1, E2 , E3 and E4
\square (e.g. divide up matrix into submatrix)

Partitioned Algorithms

\square However in the partitioned algorithm the four processors all perform A, B, C and D but only on a subset of the data

$$
1 / 13 / 2022
$$

Example

> if data needs to be communicated between processors after each iteration of a numerical calculation then this implies synchronization between processes.
> Thus partitioned algorithms are sometimes called synchronous algorithms

Partitioned Algorithms

Partitioned Algorithms

\square i.e. In pipelined algorithms the algorithm is distributed among the processors whereas in partitioned algorithms the data is distributed among the processors.

Example

\square Say we want to calculate $\mathrm{Fi}=\cos \left(\sin \mathrm{e}^{\wedge} \operatorname{sqr}(\mathrm{xi})\right)$ for $\times 1, \times 2$,.....x6 using 4 processors.

\square Pipelined Version

Example

\square F1 is produced in 4 time units F2 is produced at time 5
i.e. time $=4+(6-1)=9$ units
$==>$ SPEEDUP $=24 / 9=2.6$

Example

Asynchronous / Relaxed Parallelism

\square In relaxed algotithms there is no explicit dependency between processes,
\square as occurs in synchronized algorithms.
\square Instead relaxed algorithms never wait for input.
\square If they are ready they use the most recently available data
\square i.e. time $=8$ units
$==>$ SPEEDUP $=24 / 8=3$
$==>$ EFFICIENCY $=75 \%$
\square Efficiency is calculated by dividing speedup by number of processors
$\square \quad E=S / n$

Relaxed Parallelism

\square To illustrate this consider the following.
\square Say we have two processors A and B. A produces a sequence of numbers a1, a2 ..
$\square B$ inputs ai and performs some calculation F which uses ai.
\square Say that B runs much faster than A.

Example

\square Synchronous Operation

\square A produces al passes it to B which calculates F1;
\square A produces a2 passes it to B which calculates F2;
\square i.e. B waits for A to finish (since B is faster than A) etc..

Relaxed Parallelism

\square The idea in using asynchronous algorithms is that all processors are kept busy and never remain idle (unlike synchronous algorithms) so speedup is maximized.
\square A drawback is that they are difficult to analyse (because we do not know what data is being used) and
\square also an algorithm that is known to work (e.g. converge) in synchronous mode may not work (e.g diverge) in asynchronous mode.

Relaxed Parallelism

\square Say we have 3 processors
\square P1 : given $x, P 1$ calculates $F(x)$ in time $\dagger 1$, units and sends it to P3
$\square \mathrm{P} 2$: given $\mathrm{y}, \mathrm{P} 2$ calculates $\mathrm{F}^{\prime}(\mathrm{y})$ in time t 2 units and sends it to P 3
\square P3 : given $a, b, c, P 3$ calculates $d=a-b / c$ in time t3 units;
\square if $|d-a|>$ Epsilon then d is sent to P1 and P2 otherwise d is output.

Example

\square Asynchronous Operation

\square A produces al passes it to B which calculates $F 1$
\square but now A is still in the process of computing a2
\square so instead of waiting B carries on and calculates F2 (based on old data i.e. al and therefore may not be the same as F2 above) and
\square continues to calculate F using the old data until a new input arrives
\square e.g. Fnew $=$ Fold $+a i$

Relaxed Parallelism

\square Consider the Newton Raphson iteration for solving
$\square F(x)=0$
\square where F is some non-linear function
\square i.e. $X n+1=X n-F(X n) / F^{\prime}(X n)$......(1)
generates a sequence of approximations to the root, starting from a value $X 0$.

Example

\square Serial Mode

$\square \mathrm{P} 1$ computes $\mathrm{F}(\mathrm{Xn})$
\square then P2 computes $F^{\prime}(X n)$
\square then P3 computes $\mathrm{Xn}+1$ using (1)
\square So time per iteration is $\dagger 1+\dagger 2+\dagger 3$

- If k iterations are necessary for convergence then total time is $k(t 1+t 2+t 3)$

Example
\square Synchronous Parallel Mode. $\square \mathrm{P} 1$ and P 2 compute $\mathrm{F}\left(\mathrm{Xn}_{n}\right)$ and $\mathrm{F}^{\prime}\left(\mathrm{Xn}_{n}\right)$ simultaneously and \square when $B O T H$ have finished the values $F\left(X_{n}\right)$ and $F^{\prime}\left(X_{n}\right)$ are used by P 3 to compute $\mathrm{Xn}+1$ \square Time per iteration is $\max (+1,+2)++3$ \square Again k iterations will be necessary so total time is \mathbf{k} $\begin{aligned} & {[\max (+1,+2)++3]} \\ & X 1=X 0-F(X O) / F^{\prime}(X 0) \ldots \text {...etc } \end{aligned}$
1/13/2022

Relaxed Parallelism

\square Asynchronous Parallel Mode

$\square \mathrm{P} 1$ and P 2 begin computing as soon as a new input value is made available by $P 3$ and they are ready to receive it,
$\square \mathrm{P} 3$ computes a new value using (1) as soon as EITHER P1 OR P2 provide a new input
\square i.e. (1) is now of the form
$\square \mathbf{X n + 1}=\mathbf{X n}-\mathbf{F}(\mathbf{S X i}) / \mathrm{F}^{\prime}(\mathbf{X i})$

