
1/13/2022

1

Parallel Programming Models

 Shared Memory (without threads) 

 Threads 

 Distributed Memory / Message Passing 

 Data Parallel 

 Hybrid 

 Single Program Multiple Data (SPMD) 

 Multiple Program Multiple Data (MPMD) 

1/13/2022

1

Parallel Programming Models

 Parallel programming models exist as an 
abstraction above hardware and memory 
architectures. 

 These models are NOT specific to a particular type 
of machine or memory architecture. 

 Any of these models can be implemented on any 
underlying hardware. 

1/13/2022

2

Shared Memory Model (without 
threads)

 In this programming model, tasks share a common 
address space, which they read and write to 
asynchronously. 

 Various mechanisms such as locks may be used to 
control access to the shared memory. 

 An advantage is that the notion of data "ownership" 
is lacking, 

 so there is no need to specify explicitly the 
communication of data between tasks. 

1/13/2022

3

Shared Memory Model (without 
threads)

 An important disadvantage is that it becomes more 
difficult to understand and manage data locality.
 Keeping data local to the processor that works on it 

conserves memory accesses, cache refreshes and bus 
traffic that occurs when multiple processors use the 
same data. 

 Unfortunately, controlling data locality is hard to 
understand and beyond the control of the average user. 

1/13/2022

4

Implementations

 Native compilers and/or hardware translate user 
program variables into actual memory addresses, 
which are global. 

 On stand-alone machines, this is straightforward. 

 On distributed shared memory machines, such as the 
SGI Origin, memory is physically distributed across 
a network of machines, 

 but made global through specialized hardware and 
software. 

1/13/2022

5

Threads Model

 This is a type of shared memory programming. 

 In this model, a single process can have multiple, 
concurrent execution paths. 

 An analogy that can be used to describe threads is

 the concept of a single program that includes a 
number of subroutines: 

1/13/2022

6



1/13/2022

2

Threads Model Example

1/13/2022

7

Threads Model Example

 The main program a.out is scheduled to run by the native 
operating system. 

 a.out loads and acquires all of the necessary system and 
user resources to run. 

 a.out performs some serial work, and then creates a 
number of tasks (threads) that can be scheduled and 
run by the operating system concurrently. 

1/13/2022

8

Threads Model Example

 Each thread has local data, but also, shares the entire 
resources of a.out. 

 This saves the overhead associated with replicating a 
program's resources for each thread. 

 Each thread also benefits from a global memory view 
because it shares the memory space of a.out. 

1/13/2022

9

Threads Model Example

 A thread's work may best be described as a subroutine 
within the main program. 

 Any thread can execute any subroutine at the same 
time as other threads. 

 Threads communicate with each other through global 
memory (updating address locations). 

1/13/2022

10

Threads Model Example

 This requires synchronization constructs to ensure that 
more than one thread is not updating the same global 
address at any time. 

 Threads can come and go, 

 but a.out remains present to provide the necessary 
shared resources until the application has completed.

1/13/2022

11

Implementations:

 From a programming perspective, threads 
implementations commonly comprise: 
 A library of subroutines that are called from within 

parallel source code 

 A set of compiler directives imbedded in either serial or 
parallel source code 

1/13/2022

12



1/13/2022

3

Implementations:

 In both cases, the programmer is responsible for 
determining all parallelism. 

 Threaded implementations are not new in 
computing. 

 Historically, hardware vendors have implemented 
their own proprietary versions of threads. 

1/13/2022

13

Implementations:

 These implementations differed substantially from 
each other making it difficult for programmers to 
develop portable threaded applications. 

 Unrelated standardization efforts have resulted in 
two very different implementations of threads: 
POSIX Threads and OpenMP. 

1/13/2022

14

POSIX Threads

 Library based; requires parallel coding 

 Specified by the IEEE POSIX 1003.1c standard (1995). 

 C Language only 

 Commonly referred to as Pthreads. 

1/13/2022

15

POSIX Threads

Most hardware vendors now offer Pthreads in addition 
to their proprietary threads implementations. 

 Very explicit parallelism; requires significant 
programmer attention to detail. 

1/13/2022

16

OpenMP

 Compiler directive based; can use serial code 

 Jointly defined and endorsed by a group of major 
computer hardware and software vendors. The 
OpenMP Fortran API was released October 28, 1997. 
The C/C++ API was released in late 1998. 

1/13/2022

17

OpenMP

 Portable / multi-platform, including Unix and Windows 
NT platforms 

 Available in C/C++ and Fortran implementations 

 Can be very easy and simple to use - provides for 
"incremental parallelism" 

 Microsoft has its own implementation for threads, 
which is not related to the UNIX POSIX standard or 
OpenMP. 

1/13/2022

18



1/13/2022

4

Distributed Memory / Message 
Passing Model

 This model demonstrates the following 
characteristics: 
 A set of tasks that use their own local memory during 

computation. 

Multiple tasks can reside on the same physical machine 
and/or across an arbitrary number of machines. 

1/13/2022

19

Distributed Memory / Message 
Passing Model

 Tasks exchange data through communications by 
sending and receiving messages. 

 Data transfer usually requires cooperative operations 
to be performed by each process. 

 For example, a send operation must have a matching 
receive operation. 

1/13/2022

20

Distributed Memory / Message 
Passing Model

1/13/2022

21

Implementations

 From a programming perspective, message passing 
implementations usually comprise a library of 
subroutines. 

 Calls to these subroutines are imbedded in source 
code. 

 The programmer is responsible for determining all 
parallelism. 

1/13/2022

22

Implementations

 Historically, a variety of message passing libraries 
have been available since the 1980s. 

 These implementations differed substantially from 
each other making it difficult for programmers to 
develop portable applications. 

 In 1992, the MPI Forum was formed with the 
primary goal of establishing a standard interface 
for message passing implementations. 

1/13/2022

23

Implementations

 Part 1 of the Message Passing Interface (MPI) was 
released in 1994. Part 2 (MPI-2) was released in 
1996.

 MPI is now the "de facto" industry standard for 
message passing, 

 replacing virtually all other message passing 
implementations used for production work. 

1/13/2022

24



1/13/2022

5

Implementations

 MPI implementations exist for virtually all popular 
parallel computing platforms.

 Not all implementations include everything in both 
MPI1 and MPI2. 

1/13/2022

25

Data Parallel Model

 The data parallel model demonstrates the following 
characteristics: 
Most of the parallel work focuses on performing 

operations on a data set. 

 The data set is typically organized into a common 
structure, such as an array or cube. 

 A set of tasks work collectively on the same data 
structure, however, each task works on a different 
partition of the same data structure. 

1/13/2022

26

Data Parallel Model

 Tasks perform the same operation on their partition of 
work, for example, "add 4 to every array element". 

On shared memory architectures, all tasks may have 
access to the data structure through global memory. 

On distributed memory architectures the data structure 
is split up and resides as "chunks" in the local memory 
of each task. 

1/13/2022

27

Data Parallel Model

1/13/2022

28

Implementations

 Programming with the data parallel model is 
usually accomplished by writing a program with 
data parallel constructs. 

 The constructs can be calls to a data parallel 
subroutine library or,

 compiler directives recognized by a data parallel 
compiler. 

1/13/2022

29

Hybrid Model

 A hybrid model combines more than one of the 
previously described programming models. 

 Currently, a common example of a hybrid model is 
the combination of the message passing model 
(MPI) with the threads model (OpenMP). 
 Threads perform computationally intensive kernels using 

local, on-node data 

 Communications between processes on different nodes 
occurs over the network using MPI 

1/13/2022

30



1/13/2022

6

Hybrid Model

 This model lends itself well to the increasingly 
common hardware environment of clustered 
multi/many-core machines. 

 Another similar and increasingly popular example 
of a hybrid model is using MPI with GPU (Graphics 
Processing Unit) programming. 
GPUs perform computationally intensive kernels using 

local, on-node data 
 Communications between processes on different nodes 

occurs over the network using MPI 

1/13/2022

31

Hybrid Model

1/13/2022

32

Single Program Multiple Data 
(SPMD):

 SPMD is actually a "high level" programming model 
that can be built upon any combination of the 
previously mentioned parallel programming models. 

 SINGLE PROGRAM: 

 All tasks execute their copy of the same program 
simultaneously. 

 This program can be threads, message passing, 
data parallel or hybrid. 

1/13/2022

33

SPMD

 MULTIPLE DATA: 

 All tasks may use different data 

 SPMD programs usually have the necessary logic 
programmed into them 

 to allow different tasks to branch or conditionally 
execute only those parts of the program they are 
designed to execute. 

1/13/2022

34

SPMD

 That is, tasks do not necessarily have to execute the 
entire program –
 perhaps only a portion of it. 

 The SPMD model, using message passing or hybrid 
programming, 

 is probably the most commonly used parallel 
programming model for multi-node clusters

1/13/2022

35

SPMD

1/13/2022

36



1/13/2022

7

Multiple Program Multiple Data 
(MPMD):

 Like SPMD, MPMD is actually a "high level" 
programming model that can be built upon any 
combination of the previously mentioned parallel 
programming models. 

 MULTIPLE PROGRAM: 

 Tasks may execute different programs 
simultaneously. 

 The programs can be threads, message passing, 
data parallel or hybrid. 

1/13/2022

37

MPMD

 MULTIPLE DATA: 

 All tasks may use different data 

 MPMD applications are not as common as SPMD 
applications, 

 but may be better suited for certain types of 
problems, 

 particularly those that lend themselves better to 
functional decomposition than domain 
decomposition.

1/13/2022

38

MPMD

1/13/2022

39


