Parallel Programming Models

0 Shared Memory (without threads)

0 Threads

0 Distributed Memory / Message Passing
0 Data Parallel

o Hybrid

o Single Program Multiple Data (SPMD)

0 Multiple Program Multiple Data (MPMD)

1/13/2022

Shared Memory Model (without
threads)

0 In this programming model, tasks share a common
address space, which they read and write to
asynchronously.

01 Various mechanisms such as locks may be used to
control access to the shared memory.

0 An advantage is that the notion of data "ownership"
is lacking,

0 so there is no need to specify explicitly the
communication of data between tasks.

1/13/2022

Implementations

01 Native compilers and/or hardware translate user
program variables into actual memory addresses,
which are global.

o On stand-alone machines, this is straightforward.

o On distributed shared memory machines, such as the
SGI Origin, memory is physically distributed across
a network of machines,

0 but made global through specialized hardware and
software.

1/13/2022

1/13/2022

Parallel Programming Models
=]

0 Parallel programming models exist as an
abstraction above hardware and memory
architectures.

01 These models are NOT specific to a particular type

of machine or memory architecture.

0 Any of these models can be implemented on any
underlying hardware.

1/13/2022

Shared Memory Model (without
threads)
]

o An important disadvantage is that it becomes more

difficult to understand and manage data locality.
Keeping data local to the processor that works on it
conserves memory accesses, cache refreshes and bus
traffic that occurs when multiple processors use the
same data.
Unfortunately, controlling data locality is hard to
understand and beyond the control of the average user.

1/13/2022

Threads Model
=

0 This is a type of shared memory programming.

0 In this model, a single process can have multiple,
concurrent execution paths.

1 An analogy that can be used to describe threads is

1 the concept of a single program that includes a
number of subroutines:

1/13/2022

Threads Model Example

a.out

T1 T2

T3
T4

1/13/2022

awn]

Threads Model Example

Each thread has local data, but also, shares the entire
resources of a.out.

This saves the overhead associated with replicating a
program's resources for each thread.

Each thread also benefits from a global memory view
because it shares the memory space of a.cut.

1/13/2022

Threads Model Example

This requires synchronization constructs to ensure that
more than one thread is not updating the same global
address at any time.

Threads can come and go,

but a.out remains present to provide the necessary
shared resources until the application has completed.

1/13/2022

1/13/2022

Threads Model Example

The main program a.out is scheduled to run by the native
operating system.

a.out loads and acquires all of the necessary system and
user resources to run.

a.cut performs some serial work, and then creates a
number of tasks (threads) that can be scheduled and
run by the operating system concurrently.

1/13/2022

Threads Model Example

A thread's work may best be described as a subroutine
within the main program.

Any thread can execute any subroutine at the same
time as other threads.

Threads communicate with each other through global
memory (updating address locations).

1/13/2022

Implementations:

o From a programming perspective, threads
implementations commonly comprise:

A library of subroutines that are called from within
parallel source code

A set of compiler directives imbedded in either serial or
parallel source code

1/13/2022

Implementations:

0 In both cases, the programmer is responsible for
determining all parallelism.

0 Threaded implementations are not new in
computing.

0 Historically, hardware vendors have implemented
their own proprietary versions of threads.

1/13/2022

POSIX Threads

Library based; requires parallel coding

Specified by the IEEE POSIX 1003.1¢ standard (1995).

C Language only

Commonly referred to as Pthreads.

1/13/2022

OpenMP

Compiler directive based; can use serial code

Jointly defined and endorsed by a group of major
computer hardware and software vendors. The

OpenMP Fortran APl was released October 28, 1997.

The C/C++ APl was released in late 1998.

1/13/2022

1/13/2022

Implementations:

0 These implementations differed substantially from
each other making it difficult for programmers to
develop portable threaded applications.

o Unrelated standardization efforts have resulted in

two very different implementations of threads:
POSIX Threads and OpenMP.

1/13/2022

POSIX Threads

Most hardware vendors now offer Pthreads in addition
to their proprietary threads implementations.

Very explicit parallelism; requires significant
programmer attention to detail.

1/13/2022

OpenMP

Portable / multi-platform, including Unix and Windows
NT platforms
Available in C/C++ and Fortran implementations
Can be very easy and simple to use - provides for
"incremental parallelism”
0 Microsoft has its own implementation for threads,
which is not related to the UNIX POSIX standard or
OpenMP.

1/13/2022

Distributed Memory / Message
Passing Model
o]

0 This model demonstrates the following
characteristics:

A set of tasks that use their own local memory during
computation.

Multiple tasks can reside on the same physical machine
and /or across an arbitrary number of machines.

1/13/2022

Distributed Memory / Message
Passing Model
[
Machine A Machine B
task 0 task 1
| data | | deta |
send() recv()
network
task 2 task 3
-
recv() send()
Implementations

| 2]

0 Historically, a variety of message passing libraries
have been available since the 1980s.

0 These implementations differed substantially from
each other making it difficult for programmers to
develop portable applications.

0 In 1992, the MPI Forum was formed with the
primary goal of establishing a standard interface
for message passing implementations.

1/13/2022

1/13/2022

Distributed Memory / Message
Passing Model
=n

Tasks exchange data through communications by
sending and receiving messages.

Data transfer usually requires cooperative operations
to be performed by each process.

For example, a send operation must have a matching
receive operation.

1/13/2022

Implementations

| 22]

o From a programming perspective, message passing
implementations usually comprise a library of
subroutines.

01 Calls to these subroutines are imbedded in source
code.

0 The programmer is responsible for determining all
parallelism.

1/13/2022

Implementations

=n

o Part 1 of the Message Passing Interface (MPI) was
released in 1994. Part 2 (MPI-2) was released in
1996.

01 MPI is now the "de facto" industry standard for
message passing,

o replacing virtually all other message passing
implementations used for production work.

1/13/2022

Implementations

o MPI implementations exist for virtually all popular
parallel computing platforms.

o Not all implementations include everything in both
MPI1 and MPI2.

1/13/2022

Data Parallel Model

Tasks perform the same operation on their partition of
work, for example, "add 4 to every array element".
On shared memory architectures, all tasks may have
access to the data structure through global memory.
On distributed memory architectures the data structure
is split up and resides as "chunks" in the local memory
of each task.

1/13/2022

Implementations

0 Programming with the data parallel model is
usually accomplished by writing a program with
data parallel constructs.

01 The constructs can be calls to a data parallel
subroutine library or,

0 compiler directives recognized by a data parallel
compiler.

1/13/2022

1/13/2022

Data Parallel Model

0 The data parallel model demonstrates the following
characteristics:

Most of the parallel work focuses on performing
operations on a data set.

The data set is typically organized into a common
structure, such as an array or cube.

A set of tasks work collectively on the same data
structure, however, each task works on a different
partition of the same data structure.

1/13/2022

Data Parallel Model

doi=1,25 do i=26,50 do i=m,n
A(i)=B(i)*delta A(i)=B(i)*delta A(i)=B(i)*delta
end do end do end do

task 1 task 2 task n

1/13/2022

Hybrid Model

o A hybrid model combines more than one of the
previously described programming models.

o Currently, a common example of a hybrid model is
the combination of the message passing model
(MPI) with the threads model (OpenMP).

Threads perform computationally intensive kernels using
local, on-node data

Communications between processes on different nodes
occurs over the network using MPI

1/13/2022

Hybrid Model

o This model lends itself well to the increasingly
common hardware environment of clustered
multi/many-core machines.

0 Another similar and increasingly popular example
of a hybrid model is using MPI with GPU (Graphics
Processing Unit) programming.

GPUs perform computationally intensive kernels using
local, on-node data

Communications between processes on different nodes
occurs over the network using MPI

1/13/2022

Single Program Multiple Data
(SPMD):

1/13/2022

Hybrid Model

OpenMP OpenMP

1/13/2022

SPMD

==
0 SPMD is actually a "high level" programming model
that can be built upon any combination of the
previously mentioned parallel programming models.
o1 SINGLE PROGRAM:
0 All tasks execute their copy of the same program
simultaneously.
o This program can be threads, message passing,
data parallel or hybrid.
1/13/2022
SPMD
==

0 That is, tasks do not necessarily have to execute the
entire program —
perhaps only a portion of it.
o1 The SPMD model, using message passing or hybrid
programming,

0 is probably the most commonly used parallel
programming model for multi-node clusters

1/13/2022

=n
o MULTIPLE DATA:
o All tasks may use different data
o SPMD programs usually have the necessary logic
programmed into them
0 to allow different tasks to branch or conditionally
execute only those parts of the program they are
designed to execute.
1/13/2022
SPMD
==

task 1

task2 fask3 .. taskn

1/13/2022

Multiple Program Multiple Data
(MPMD):

0 Like SPMD, MPMD is actually a "high level"
programming model that can be built upon any
combination of the previously mentioned parallel
programming models.

o MULTIPLE PROGRAM:

0 Tasks may execute different programs
simultaneously.

0 The programs can be threads, message passing,
data parallel or hybrid.

1/13/2022

MPMD

task 1 task2 task3 .. taskn

1/13/2022

1/13/2022

MPMD

o MULTIPLE DATA:
o All tasks may use different data

0 MPMD applications are not as common as SPMD
applications,

0 but may be better suited for certain types of
problems,

0 particularly those that lend themselves better to
functional decomposition than domain
decomposition.

1/13/2022

