
8/19/2014

1

• Introduction to SQL
• Basic structure of SQL
commands
• Data Definition
• Data Manipulation
• Aggregation

Outline

Introduction to
SQL

• SQL is a transform-oriented
language with two major components.

• the DDL for defining the database
structure and

• the DML for retrieving and updating
data.

Introduction to
SQL

• SQL does not contain flow control
commands.

• must be implemented using a
programming or job-control
language,

• or interactively by the decisions of
the user.

Introduction to
SQL

• SQL is relatively easy to learn.
• SQL is a nonprocedural language,
• you specify what information you
require,

• rather than how to get it.

Introduction to
SQL

• An ISO standard exists for SQL,
• making it both the formal and de
facto standard language for
relational databases.

• The most popular and widely
implemented is referred to as
SQL2 or SQL/92.

8/19/2014

2

Basic structure of
SQL commands

• SQL statement consists of reserved
words and user-defined words.

• Reserved words are a fixed part of
SQL and must be spelt exactly as
required and cannot be split across
lines.

• User-defined words are made up by
user and represent names of various
database objects such as relations,
columns and views.

Basic structure of
SQL commands

• Most components of an SQL
statement are case insensitive

• SQL statements are more
readable with indentation and
lineation.

TABLE DEFINITION-
• The syntax for creating a table
consists of an ordered set of
attributes and a (possibly empty)
set of constraints.

• CREATE TABLE table_name

(col_name data_type [NULL |
NOT NULL] [,...])

TABLE DEFINITION-
example

• CREATE TABLE Employee

(

RegNo CHARACTER(6) PRIMARY
KEY,

FirstName CHARACTER(20)
NOT NULL,

Surname CHARACTER(20) NOT
NULL,

TABLE DEFINITION-
CONT

Dept CHARACTER (15) REFERENCES
Department(DeptName) ON DELETE
SET NULL
ON UPDATE CASCADE,
Salary NUMERIC(9) DEFAULT 0,
City CHARACTER(15),
UNIQUE (Surname,FirstName)
)

DROP DEFINITION
• A Table can be deleted from a
database using the command
“drop”.

• The following syntax is used.

– DROP TABLE name [RESTRICT
| CASCADE];

8/19/2014

3

DROP DEFINITION
CONT:

• With RESTRICT (default), Table
must be empty or operation fails.

• With CASCADE, SQL drops all
dependent objects — and objects
dependent on these objects

ALTER DEFINITION

• ALTER (alter domain ..., alter table
…)

• For example the commande:

ALTER TABLE Department

ADD COLUMN NoOfOffices
NUMERIC(4);

Data Manipulation

• A query in SQL can consist of up
to six clauses,

• but only the first two are
mandatory.

• SELECT [DISTINCT | ALL]

{* | [column_expression [AS
new_name]] [,...] }

Data Manipulation
FROM table_name [alias] [, ...]

[WHERE condition]

[GROUP BY column_list]

[HAVING condition]

[ORDER BY column_list]

Data Manipulation CONT:
• SELECT specifies which columns
are to appear in output.

• FROM specifies table(s) to be
used.

• WHERE filters rows.

Data Manipulation CONT:

• GROUP BY forms groups of
rows with same column value.

• HAVING filters groups
subject to some condition.

• ORDER BY specifies the
order of the output.

8/19/2014

4

Employee Table
Example 1 -All Columns, All

Rows

• List full details of all staff.

– SELECT staffNo, fName, lName,
address, position, sex, DOB, salary,
branchNo

FROM Employee;

All Columns, All Rows

• Can use * as an abbreviation for 'all
columns':

• SELECT *

FROM Employee;

Example 2 - Specific Columns, All
Rows

• Produce a list of salaries for all
staff, showing only staff number,
first and last names, and salary.

• SELECT staffNo, fName, lName,
salary

FROM Employee;

Example 3 - Use of DISTINCT

• List the branch numbers.

• SELECT branchNo

• FROM Employee;

Example 3 Use of DISTINCT

• Use DISTINCT to eliminate
duplicates:

• SELECT DISTINCT branchNo

FROM Employee;

8/19/2014

5

Example 4 - Specific Columns,
Specific Rows.

• Find the salaries of employees
named White.

• SELECT Salary as Remuneration

FROM Employee

WHERE Surname = ’White’;

Example 5- All Columns,
Specific Rows.

• Find all the information relating
to employees named White.

• SELECT *

FROM Employee

WHERE Surname = ’Employee’;

Example 6 - calculated field

• Produce a list of monthly salaries for all
employees, showing staff number, first
and last names, and salary details

• SELECT Snumber, Fname, Lname,
Salary / 12 AS MonthlySalary

FROM Employee;

Example 7 Comparison Search
Condition

• List all staff with a salary greater
than 10,000.

• SELECT staffNo, fName, lName,
position, salary

FROM Staff

WHERE salary > 10000;

Example 8 Compound Comparison
Search Condition

• Find all employees who are managers or
supervisors.

• SELECT *

FROM Employee

WHERE position = ‘Manager' OR position
= ‘Supervisor';

Could also write:
• SELECT staffNo, fName, lName,
position

FROM Staff

WHERE position IN ('Manager',
‘Supervisor');

8/19/2014

6

Example 9 Range Search
Condition

• List all Employees with a salary between
20,000 and 30,000.

• SELECT staffNo, fName, lName, position,
salary

FROM Employee

WHERE salary BETWEEN 20000 AND
30000;

Could also write:

• SELECT staffNo, fName, lName, position,
salary

• FROM Employee

WHERE salary>=20000 AND salary <=
30000;

Simple join query
• Find the names of the employees and
the cities in which they work.

• SELECT Employee.FirstName,
Employee.Surname, Department.City

FROM Employee, Department

WHERE Employee.Dept =
Department.DeptName;

Alternative JOIN
Constructs

• SQL provides alternative ways to specify joins:
• FROM Employee E JOIN Department D ON
E.Dept = D.DeptName

• FROM Employee JOIN Department USING
DeptName

• FROM Employee NATURAL JOIN Department
• In each case, FROM replaces original FROM and
WHERE. However, first produces table with two
identical DeptName columns

Three Table Join

• For each branch, list staff who manage
properties, including city in which branch is
located and properties they manage.

• SELECT b.branchNo, b.city, s.staffNo, fName,

lName, propertyNo

FROM branch b, staff s, property_for_rent p

WHERE b.branchNo = s.branchNo AND

s.staffNo = p.staffNo

ORDER BY b.branchNo, s.staffNo, propertyNo

Three Table Join
• Alternative formulation for FROM
and WHERE:

• FROM (branch b JOIN Staff s
USING branchNo) AS bs JOIN
PropertyForRent p USING staffNo

8/19/2014

7

Outer Joins

• To include unmatched rows in result
table, use an Outer join.

Left Outer Join

• List branches and properties that are
in

same city along with any unmatched
branches.

• SELECT b.*, p.*

FROM Branch1 b LEFT JOIN

PropertyForRent1 p ON b.bCity =
p.pCity;

Right Outer Join

• List branches and properties in same
city and any unmatched properties.

• SELECT b.*, p.*

FROM Branch1 b RIGHT JOIN

PropertyForRent1 p ON b.bCity =
p.pCity;

Full Outer Join

• List branches and properties in same city

and any unmatched branches or
properties.

• SELECT b.*, p.*

FROM Branch1 b FULL JOIN

PropertyForRent1 p ON b.bCity = p.pCity;

Aggregation

• ISO standard defines five
aggregate functions. These are:

– COUNT returns number of
values in a specified column.

– SUM returns sum of values in a
specified column.

Aggregation
– AVG returns average of values
in a specified column.

–MIN returns smallest value in a
specified column.

–MAX returns largest value in a
specified column.

8/19/2014

8

Aggregate functions
• Each operates on a single column of a table
and return single value.

• COUNT, MIN, and MAX apply to numeric
and non-numeric fields, but SUM and AVG
may be used on numeric fields only.

• Apart from COUNT(*), each function
eliminates nulls first and operates only on
remaining non-null values.

Aggregate functions
• COUNT(*) counts all rows of a table,
regardless of whether nulls or duplicate
values occur.

• Can use DISTINCT before column name to
eliminate duplicates.

• DISTINCT has no effect with MIN/MAX
(it eliminates duplicates itself),

• but may have with SUM/AVG, e.g.–
– select avg(sal) from emp ≠ select
avg(distinct sal) from emp;

Aggregate functions
• Aggregate functions can be used only
in SELECT list and in HAVING clause.

Aggregation examples
• The Count function
– How many properties cost more than
£350 per month for rent?

• SELECT Count(*) AS count

FROM property

WHERE property.Rent > 350;

Aggregation examples
• The Max, Min and Avg function
– Find the minimum, maximum and average
staff salary.

• SELECT MIN(salary) AS MIN,
MAX(salary) AS MAX, AVG(salary)
AS AVG

FROM staff;

Aggregation examples
• Using the Group By clause
– Find the number of staff working in
each branch and the total of their
salaries.

• SELECT bno, COUNT(sno) AS count,
SUM(salary) AS sum
FROM staff
GROUP BY bno
ORDER BY bno;

8/19/2014

9

Aggregation examples
• Using predicates on grouping
results

– For each branch office with
more than one member of
staff, find the number of staff
working in each branch and the
sum of their salaries.

Aggregation examples
• SELECT bno, COUNT(sno) AS count,
SUM(salary) AS sum

FROM staff

GROUP BY bno

HAVING COUNT(SNO) > 1;

Multiple Grouping Columns

• Find number of properties handled by each
staff member.

• SELECT s.branchNo, s.staffNo, COUNT(*)
AS count
FROM Staff s, PropertyForRent p
WHERE s.staffNo = p.staffNo
GROUP BY s.branchNo, s.staffNo
ORDER BY s.branchNo, s.staffNo;

Subqueries
• Some SQL statements can have a
SELECT embedded within them.

• A subselect can be used in WHERE
and HAVING clauses of an outer
SELECT, where it is called a subquery
or nested query.

• Subselects may also appear in
INSERT, UPDATE, and DELETEs.

Subquery with Equality

• List staff who work in branch at '163 Main
St'.

• SELECT staffNo, fName, lName, position

FROM Staff

WHERE branchNo = (SELECT branchNo

FROM Branch

WHERE street = '163 Main St');

Subquery with Equality
• Inner SELECT finds branch number
for branch at '163 Main St' ('B003').

• Outer SELECT then retrieves details
of all staff who work at this branch.

• Outer SELECT then becomes:
• SELECT staffNo, fName, lName,
position
FROM Staff
WHERE branchNo = 'B003';

8/19/2014

10

Subquery with
Aggregate

• List all staff whose salary is greater than
the average salary, and show by how much.

• SELECT staffNo, fName, lName, position,

salary – (SELECT AVG(salary) FROM
Staff)

As SalDiff

FROM Staff

WHERE salary > (SELECT AVG(salary)
FROM Staff);

Subquery with
Aggregate

• Cannot write 'WHERE salary >
AVG(salary)'

• Instead, use subquery to find average
salary (17000), and then use outer SELECT
to find those staff with salary greater
than this:

• SELECT staffNo, fName, lName, position,
salary – 17000 As salDiff

FROM Staff

WHERE salary > 17000;

Subquery Rules
• ORDER BY clause may not be used in
a subquery (although it may be used
in outermost SELECT).

• Subquery SELECT list must consist
of a single column name or
expression, except for subqueries
that use EXISTS.

Subquery Rules
• By default, column names refer to
table name in FROM clause of
subquery. Can refer to a table in
FROM using an alias.

• When subquery is an operand in a
comparison, subquery must appear on
right-hand side.

• A subquery may not be used as an
operand in an expression.

Questions

