

The Entity-Relationship model

- The E-R model is a detailed, logical representation of the data for an organisation or business area
- It should be understandable to both the user and to the IT technologist

The Entity-Relationship model

- The model must be as 'open' as possible and not tied to any technology or to any particular business methodology
- It must be flexible enough so that it can be used and understood in practically any environment where information is modelled

- It is expressed in terms of entities in the business environment, the relationships (or associations) among those entities and the attributes (properties) of both the entities and their relationships
- The E-R model is usually expressed as an E-R diagram

E-R Model Constructs

- Entity person, place, object, event, concept
- Each entity is given a name, since this name represents a set of items, it is always singular.
- It is placed inside the box representing the entity

E-R Model Constructs

- Entity instance is a single occurrence of an entity type.
- Eg Entity is EMPLOYEE and Instance is John Banda

A strong entity types – one that exists independently from other entity types

- A weak entity type existence depends on some other entity type.
- It has no meaning in the ER diagram without the entity on which it depends
- The entity type on which the weak entity type depends is called the Identifying owner (or owner for short).

Attributes

- An attribute is a property or characteristic of an entity, for example the entity EMPLOYEE may have attribute Employee_Name
- Attributes may also be associated with relationships
- An attribute is associated with exactly one entity or relationship

Simple versus composite attributes

- Some attributes can be broken down into meaningful component parts, such as Address, which can be broken down into Street Address, City..etc.
- A simple (atomic) attribute is one that cannot be broken down into smaller components

Single-Valued versus Multivalued Attribute

- It frequently happens that there is an attribute that may have more than one value for a given instance, e.g. EMPLOYEE may have more than one Skill.
- A Multivalued attribute is one that may take on more than one value.

Derived Attributes

- Some attribute values can be calculated or derived from others
- e.g., Years_Employed can be calculated for EMPLOYEE, by using Date_Employed and Today's_Date
- A derived attribute is one whose value can be calculated from related attribute values

Relationships

- A relationship is an association among the instances of one or more entity types that is of interest to the organisation
- Relationship Type is a meaningful association
 - implying that the relationship allows us to answer questions that could not be answered given only the entity types

Relationship instance

- Is an association between (or among) entity instances, where each relationship includes exactly one entity from each participating entity type.
- For example, in the following figure each line represents a relationship instance between one employee and one course

Attributes on relationships

- Attributes may be associated with a manyto-many (or one-to-one) relationship, as well as with an entity
- In the following diagram, the relationship 'Completes' joins the EMPLOYEE and COURSE entities, and Date_Completed is joined to this as it is a property of the relationship 'Completes'

Degree of a relationship

- number of entity types that participate in it.
- The three most common relationship degrees are unary (degree 1), binary (degree 2) and ternary (degree 3 –see following Fig.)
- Higher degree relationships are possible but rarely encountered in practice

Unary relationship

- Is between the instances of a single entity type (also called recursive relationships)
- `Is_Married_To' is a relationship between instances of the PERSON entity type
- 'Manages' is a relationship between instances of the EMPLOYEE entity type

Cardinality constraints

- The number of instances of one entity that can or must be associated with each instance of another entity.
- e.g. a video store may stock more than one VIDEOTAPE for each MOVIE, this is a 'one-to-many' relationship as in the following.

Minimum cardinality

- The minimum cardinality of a relationship is the minimum number of instances of an entity B that may be associated with each instance of an entity A
- In our example, the minimum number of VIDEOTAPES of a MOVIE.

Maximum cardinality

- Is the maximum number of instances of an entity B that may be associated with each instance of entity A
- In the following Fig., the maximum cardinality for the VIDEOTAPE entity type is 'many' (an unspecified number greater than 1)

Participation Constraints

- Is about the importance of the instances' *participation* in a specific relationship.
- If it is applied to every instance of an entity, then it is called a *total* or a *mandatory participation*
- (it is a *must* for each instance belongs to that entity type).

Participation Constraints If only parts of the instances participate in

a relationship or in other words, an instance may or may not participate in that relationship, then this is called a *partial* or *optional participation*.

Example of participation Constraints

- EMPLOYEE Is_Assigned_To PROJECT
- Each PROJECT has at least one EMPLOYEE assigned to it.
- Each EMPLOYEE may or (optionally) may not be assigned to any existing PROJECT, or may be assigned to one or more PROJECTs.

6/12/2014

