N
A

Logical database design
and the relational model

\—/\/\//a

Relational database componen

+ Data structure
- Data organized into tables
+ Data manipulation

- Add, delete, modify, and retrieve using
SQL

+ Data integrity
- Maintained using business rules

<L

Transforming E-R
diagrams into relations

Mapping regular entities to relations.
+ Identify the primary key
- Composite attributes: use only
their simple, component attributes

- Multi-valued attributes: become a
separate relation with a foreign
key taken from the superior entity

7/11/2014

Objectives of logical design..

* Translate the conceptual design into
logical database design that can be
implemented on a chosen DBMS
- Input: conceptual model (ERD)

- Output: relational schema, normalized
relations

<L

Transforming the ERD
diagram into relations

The steps:

* Map regular entities

* Map weak entities

* Map binary relationships
* Map associative entities

* Map unary relationships

* Map ternary relationships

<L

Mapping a composite a‘r'rr'ibu1§\\

| Customer_Neme

@ CUSTOMER
<y

Customer_Adersss

Looks like this using relationa
schema notation

Um0 | Coorw e | Sl | Cy | S | T

Example of mapping a we
entity

Employee_ID Employee_Name
EMPLOYEE DEPENDENT ’m

Transforming E-R
diagrams into relations
Mapping binary relationships
- One-to-many - primary key on the

one side becomes a foreign key on
the many side

<L

7/11/2014

Transforming E-R
diagrams into relations

Mapping weak enftities

- Becomes a separate relation with a
foreign key taken from the
superior entity.

- The primary key is a combination of
the parent identifier and the weak
entity identifier.

<L

Looks like this using

relational schema notation
EUPLOVEE

Employee_ID | Employee_Name

DEPENDENT w

Firsi_Name | Middle_Inital | Last_Name | Employee ID | Date_of Birth | Gender

=2

Transforming E-R
diagrams into relations

- Many-to-many - create a new
relation (associative entity) with the
primary keys of the two enftities as
its primary key

- One-to-one - primary key on the
mandatory side becomes a foreign
key on the optional side

<L

7/11/2014

Example of mapping a 1:M
relationship

CUSTOMER

Order_ID OrderﬁDD

s

Looks like this using
relational schema notation

CUSTOMER

Customer_ID Customer_Name Customer_Address

L
ORDER \

Order_ID Order_Date Customer_ID

Example of mapping an
M:M relationship

Order_ID Orcer_Dete

RIER >6

PRODUCT

Mapping a binary 1:1
relationship

Date_of_Birth

Date_Assigned
&
@ CENTER Location
~Q

=4

Looks like this using
relational schema notation
ORDER
| QOrder_ID | Order_Date
ORDER_LINE
Qrder_ID Product_I1D | Quantity |
PRODUCT
| Product_ID | Unil_Price | (Other Attributes) |

N

Looks like this using
relational schema notation

NURSE

Nurse_ID | Name | Date_of_Birth

L\

CARE CENTER 3\

Center_Name | Location | Nurse_in_Charge | Date_Assigned

=2

Transforming E-R
diagrams into relations

Mapping associative entities
- Identifier not assigned
+ Default primary key for the

association relation is the

primary keys of the two entities

Mapping an associative
entity with an idenftifier

VEHdOLlD
<
~N

CUSTOMER > SHIPMENT, VENDOR

Shipment_No

[e

Transforming E-R
diagrams into relations

Mapping unary relationships

* One-to-many - A foreign key attribute is
added within the same relation that
references the primary key values (this
foreign key must have the same domain as
the primary key)

- A recursive foreign key is a foreign key in
a relation that references the primary key

s of that same relation

7/11/2014

Transforming E-R
diagrams into relations

- Identifier assighed

- It is natural and familiar to end-
users

* Default identifier may not be

unique

Looks like this using
relational schema notation
CUSTOMER l
Customer_ID | Name | (Other Attributes)

SHIPMENT %

Shipment_No | Customer_ID | Vendor_ID | Date | Amount

J
VENDOR ¥
Vendor_ID | Address | (Other Attributes) g
Y

Example %\\\

@i

Employee ID

EMPLOYEE | >

Manages

o

E .

7/11/2014

Would look like...

EMPLOYEE

Employee_ID | Name | Birthdate | Manager_ID

<L

Unary Many-to-many

- Here two relations are created, one to
represent the entity type in the
relationship and another representing the
M:N relationship itself

* The primary key of the associative
relation consists of two attributes, both
taking their values from the primary key
of the other relation

* Any non-key attribute of the relationship
is included in the associative relation

Example
() (o) G

a)-Bill-of-materials
relationships (M:N)

Would look like...

ITEM (b) ITEM and
COMPONENT

> ltem_No | Name | Unit_Cost | relations

(1
\""’-7-,_
COMPONENT

ltem_No | Component_No | Quantity

Mapping ternary (and n-ary)
relationships

+ convert a ternary relationship to an
associative entity in order to represent
participation constraints more
accurately.

* Firstly, we create a new associative
relation.

* The default primary key of this relation
consists of the three primary key

&u‘res for the participating entities

Mapping ternary (and n-
ary) relationships

* These attributes then act in the role
of foreign keys that reference the
individual primary keys of the
participating entity types .

* Any attributes of the associative
entity type become attributes of the
new relation

<L

7/11/2014

Mapping a ternary r.e|aﬂons|% Looks like this using relationa
schema notation

PATIENT

Patient_ID Patient_Mame
PHYSICIAN
‘ Physician_ID ‘Physician_hlame
= z
Resulls PATIENT ° PATIENT TREATMENT
TREATMENT. —
N Patient_ID | Physician_I0 |TrealmenLCode Date Time Results
me

N4
TREATMENT

(]
Treatment_Code

Description

[~e

Questions

