DIT250 / BIT180 - MATHEMATICS

- ASSESSMENT
- CA - 40\%
- 3 TESTS
- EXAM - 60\%
- LECTURE SLIDES
- www.Lechaamwe.weebly.com
- Lecture notes
- DIT250/BIT180

Number Bases

- In this lesson we shall discuss different Number Bases, specifically those used by the computer
- These include:
- decimal numbers (base ten)
- binary numbers (base two)
- octal numbers (base eight)
- Hexadecimal numbers (base sixteen)

Decimal numbers (base ten),

- Numbers used by humans to quantify items
- It's called base ten because...?
- Symbols used - 0,1,2,3,4,5,6,7,8 and 9
- To count in base ten, you go from 0 to 9, then do combinations of two digits starting with 10 all the way to 99

Decimal numbers (base ten),

- After 99 comes three-digit combinations from 100 - 999, etc.
- This combination system is true for any base you use.
- The only difference is how many digits you have before you go to the next combination

Binary numbers (base two)

- Numbers used and understood by computers
- Symbols used 0 and 1
- To count in base two,
- you count 0,1 , then switch to two digit combinations, 10,11 , then to three digit combos, $100,101,110,111$, then four digit, 1000, \qquad , ..., 1111

Binary numbers (base two)

- Have place values of powers of two
- Eg 1
- 110_{2}
- 1 place value - 2^{2}
- 1 place value - 2^{1}
- 0 place value -2^{0}

Binary numbers (base two)

- Eg 2
- 11.10_{10}
.1 place value -2^{1}
-1 place value -2^{0}
-1 place value -2^{-1}
-0 place value -2^{-2}

Octal numbers (base eight),

- Numbers used by machine language programmers as short hand for binary numbers
- Three binary digits are equivalent to 1 octal digit
- $\mathrm{Eg} 6_{8} \approx 110_{2}$
- Symbols used - 0, 1, 2, 3, 4 ,5, 6 and 7

Octal numbers (base eight),

- Have place values of powers of eight
- Eg 1
- 456_{8}
- 4 place value -8^{2}
-5 place value -8^{1}
- 6 place value -8^{0}

Octal numbers (base eight),

- Eg 2
- 34.56_{8}
- 3 place value - 8^{1}
.4 place value -8^{0}
-5 place value -8^{-1}
-6 place value -8^{-2}

Hexadecimal numbers (base sixteen)
Hexadecimal numbers (base sixteen)

- Numbers used by machine and assembly language programmers to help simply low level programming
- Four binary digits are equivalent to 1 octal digit - $\mathrm{Eg} 9_{16} \approx 1001_{2}$
- Symbols used - 0 , 1, 2, 3, 4 ,5, 6,7,8,9,10, 11, 12, 13,14 and 15
- Symbols 10, 11, 12, 13, 14 and 15 replaced by letters A, B, C, D, E and F respectively
- Have place values of powers of sixteen
- Eg 1
- A79 ${ }_{16}$
- A place value - 16^{2}
. 7 place value - 16^{1}
- 9 place value - 16^{0}

Hexadecimal numbers (base sixteen)

- Eg 2
- E6.A8 ${ }_{16}$
- E place value - 16^{1}
- 6 place value -16^{0}
- A place value - 16^{-1}
- 8 place value -16^{-2}

Base conversion

- To convert from base ten to another base, such as base two, eight, or sixteen, is an important skill for computer scientists and programmers.
- The next section shows how to do this.

Base Ten to Base Two

- Here's an easy way to do it on paper

$$
2 \left\lvert\, \frac{27}{13} 1\right.
$$

- 27 divided by $2=13$, R 1

Base Ten to Base Two

- $6 / 2=3, R 0$
- $13 / 2=6, \mathrm{R} 1$

Base Ten to Base Two

2	27	1
2	13	1
2	6	0
2	$\frac{3}{2}$	1

- Stop, and write the answer

Base 2 to base 10

- Use place values to convert.
- Eg1. Convert 11011_{2} to Base 10

Base Ten to Base Eight

- Let's again take the value 27 and convert it into base 8.
- Same process:
- Divide 27 by 8
- The answer is 3, remainder 3
- Stop! You can't divide anymore because the answer is less than 8

Base Ten to Base Eight

- Use the same method on paper

$$
8 \lcm{\underline{27}} 3
$$

- 27 divided by $8=3$, R 3
- 27 , base $10=33$, base 8

Base 8 to Base 10 - Use place values to convert - Eg 1 Covert 2657 to Base 10			
2	6	5	7
8^{3}	8^{2}	8^{1}	8^{0}
512×2	64x6	8×5	1x8
1024+	384+	$40+$	$8+$
$1456{ }_{10}$			

Base 8 to Base 10

- Eg2 Covert 327.24 to Base 10

3	2	7		2
8^{2}	8^{1}	8^{0}		8^{-1}

Exercises

- Now try the same values for base eight.

6. $16_{10}=$ \qquad —
7. $47_{10}=$ \qquad -
8. $145_{10}=$ \qquad $-$
9. $31_{10}=$ \qquad \rightarrow
$10.32_{10}=$ \qquad

Base Ten to Base Sixteen

- Finally we'll convert 27 into base 16.
- Divide 27 by 16
- The answer is 1, remainder 11
- Stop! You can't divide anymore because the answer is less than 16

Base Ten to Base Sixteen

- The last answer was 1 , and the only remainder was 11 , which in base 16 is the letter B, so the base sixteen value is $1 B$, base 16 .

Base Ten to Base Sixteen

- Again, the same method on paper

16|2711(B)

- 27 divided by $16=1, \mathrm{R} 11$ or B
- 27 , base $10=1$ B, base 16

| | |
| :--- | :--- | :--- | :--- |
| Base 16 to Base 10 | |
| \bullet | E.g Covert $12 \mathrm{AE}_{16}$ to base 10 |

- EG 2, Convert 62A. 48_{16} TO BASE 10

6	2	A	4	8
16^{2}	16^{1}	16^{0}	16^{-1}	16^{-2}
256x6	16x2	1x10	1/16x4	$\begin{gathered} 1 / 256 \mathrm{x} \\ 4 \end{gathered}$
1536+	32+	10+	1/4+	1/32
$\begin{aligned} & =1578+9 / 32 \\ & =1578.2812 \end{aligned}$				

Convert from Base 2 to Base 8

- Using the fact that 3 binary digits are equivalent to one octal digit.
- Eg1. Convert 1001110011
- Group the bits in 3 s beginning with the least significant bit
- 001001110011
- Convert the individual groups to base 10 .
- Ie $001=1$
$001=1$
$110=6$
$011=3$
Therefore 1001110011_{2} equivalent to 1163_{10}
Convert from Base 2 to Base 8
- Eg2. Convert 1110011.01101_{2}
- Group the bits in 3 s beginning from the decimal point
- 001110011.011010_{2}
- Ie $001=1$
- $110=6$
- $011=3$
-011=3
- $010=2$
- Therefore $1110011.01101_{2}=163.32_{10}$

Convert from Base 8 to Base 2

- Using the similar fact that 3 binary digits are equivalent to one octal digit and convert individual digits to base 2 and form groups of 3 .
- Eg 1 convert 6752_{8} to base 2
- $6=110$
- $7=111$
- $5=101$
- $2=010$
- Therefore $6752_{8}=110111101010_{2}$

Convert from Base 8 to Base 2

- Eg. 2, Convert 435.465_{8} to base 2
- $4=100$
- $3=011$
- $5=101$
- $4=100$
- $6=110$
- $5=101$
- Therefore $435.465_{8}=100011101.100110101_{2}$

Convert from Base 2 to Base 16

- Using the fact that 4 binary digits are equivalent to one hex

Convert from Base 2 to Base 16

- Eg2. Convert 111001111.01110101_{2}
- Group the bits in 4 s beginning from the decimal point
- 111001111.01110101_{2}
- 000111001111.01110101
- $0001=1$
- $1100=12=\mathrm{C}$
- $1111=15=\mathrm{F}$
- $0111=7$
- $0101=5$
- Therefore $111001111.01110101_{2}=1 \mathrm{CF} .75_{16}$

