
3/24/2014

1

Number Representation

Representation of Numbers

� Computer represent all numbers, other
than integers and some fractions with
imprecision.

� Numbers are stored in some
approximation which can be
represented by a fixed number of bits
or bytes.

� There are different types of
“representations” or “data types”.

Representation of Numbers

� Information in the computer are stored
as a groups of binary digits.

� An individual digit is called a bit.

� Bits are grouped into 8-bit collections
called bytes.

� Memory is normally measured in terms
of bytes.

� Bytes are further grouped into 4 or more byte
groupings to make up a computer word.

� The most common word size in most modern
computers is 32 bits (4 8-bit bytes)

� Many programs do scientific calculations
using double (64-bit) words.

� What is the largest integer value that can be
expressed in 32 bits?

11111111111111111111111111111111

232−1 = 4,294,967,295

32-bit Unsigned Integers
Maximum Value

Fixed point Integer Representation

• Signed Magnitude: Leading bit represents sign and
remaining bits represent the corresponding unsigned
number.

• One’s Complement: Negative representation is obtained
by flipping all the bits of the unsigned number.

• Two’s Complement: Negative representation is obtained
by flipping all the bits and adding one.

3/24/2014

2

Fixed point Integer Representation

� A common method of integer
representation is sign and magnitude rep.

� One bit is used for the sign and the
remaining bits for the magnitude.

� For example, let 0 denote positive and 1
denote negative

� Clearly there is a restriction to the numbers
which can be represented.

Fixed point Integer Representation

� The range of numbers represented is

� -2m-1-1 to +2m-1-1.

� With an 8 bit byte, the largest and
smallest numbers represented are +127
and –127.

+127 = 0 1 1 1 1 1 1 1

-127 = 1 1 1 1 1 1 1 1

Sign bit (-ve number)

Sign bit (+ve number)

Fixed point Integer Representation

� Things to note:

1. Fixed point numbers are represented as
exact.

2. Arithmetic between fixed point numbers
is also exact provided the answer is
within range.

3. Division is also exact if interpreted as
producing an integer and discarding any
remainder.

Ones and twos compliment
representation

� Can be used for negative numbers.

� The ones compliment form of a negative
number is the bitwise NOT applied to it

� Ie. The compliment of its positive counterpart

� The twos compliment form of a negative
number is the bitwise NOT applied to it with a
1 added to it.

� The range of signed numbers using
ones’ compliment is represented by

� -2m-1-1 to 2m-1-1

Floating point Representation

3/24/2014

3

Floating point Representation

� In floating point representation, numbers
are represented by a sign bit s, an
integer component e, a positive integer
mantissa M. mantissa

exponent
(integer)

base
(10 or 8 or 2)

m * be

Computer Representation of Real
(floating point) Numbers

Floating point Representation

� Most computers use the IEEE
representation where the floating point
number is normalized.

� The two most common IEEE rep are:

1. IEEE Short Real (Single Precision): 32 bits –
1 for the sign, 8 for exponent and 23
mantissa

2. IEEE Long Real (Double Prec): 64 bits – 1
sign bit, 11 for exp and 52 for the mantissa

Floating Point Numbers

Example 1.
Represent 27.25 using the IEEE short real rep

First Let us convert 27.25 to binary:
11011.01
This is equal to:

0.1101101 x 25

In normal form

Using the IEEE Short Real : 32 bits – 1 for
the sign, 8 for exponent and 23 mantissa
Internal representation of 27.25 is then:

0 00000101 11011010000000000000000

Floating Point Numbers

Sign of
number exponent

(with sign)
Note: limited number of digits
to represent mantissa

Floating Point Numbers

Example 2.
Represent 0.1 using the IEEE short real representation

First Let us convert 0.1 to binary:
0.000110011001100110011001100110110110…

This is equal to:
0.1100110011001100110011001100110011… x 2−3

In normal form

3/24/2014

4

Using the IEEE Short Real : 32 bits – 1 for
the sign, 8 for exponent and 23 mantissa
Internal representation of 0.1 is then:

0 10000011 10011001100110011001100

Floating Point Numbers

Sign of
number exponent

(with sign)
Note: limited number of digits
to represent mantissa

Floating Point Numbers

Example 3.
Represent -78.5 using the IEEE short real rep

First Let us convert 78.5 to binary:
1001110.1
This is equal to:

0.10011101x 27

In normal form

Using the IEEE Short Real : 32 bits – 1 for
the sign, 8 for exponent and 23 mantissa
Internal representation of 0.1 is then:

1 00000111 10011101000000000000000

Floating Point Numbers

Sign of
number exponent

(with sign)
Note: limited number of digits
to represent mantissa

Errors in computations

� There five types of errors in computation:

1. Mistakes

2. Random error

3. Truncation error

4. Roundoff error

5. Propagated error

Errors and Uncertainties

� Mistakes: are typographical errors
entered with program or maybe running
the program using the wrong data etc.

Errors and Uncertainties

� Random errors: these are caused by
random fluctuations in electronics due
to for example power surges.

� The likelihood is rare but there is no
control over them.

3/24/2014

5

Errors and Uncertainties

� Truncation or approximation errors:
these occur from simplifications of
mathematics so that the problem may
be solved.

� For example replace of an infinite series
by a finite series.

� Eg: ∑
∞

=

=
0 !n

n
x

n

x
e ()Nxe

n

x x
N

n

n

,
!0

ζ+=≈∑
=

Errors and Uncertainties

� Where is the total absolute
error.

� The truncation error vanishes as N is
taken to infinity.

� For N much larger than x, the error is
small.

� If x and N are close then the truncation
error will be large.

()Nx,ζ

Errors and Uncertainties

� Roundoff error: since most numbers are
represented with imprecision by
computers (and general restrictions) this
leads to a number being lost.

� The error as result of the roundoff or
truncation of digits is known as the
roundoff error.

� Eg1: 00000001.06666667.06666666.0
3

2

3

1
2 ≠−=−=−









Round-Off Error

If we represent the perfectly good decimal fraction

0.1 as a binary fraction we get:

0.00011001100110011001100110011011 (0110

repeats)

Suppose we have a computer that stores 11 bits in

the mantissa. The binary fraction (after rounding)

becomes:

0.110011001101•2-3 = 0.100006110

Errors and Uncertainties

� Propagated error: this is defined as an
error in later steps of a program due to
an earlier error.

� This error is added the local error(eg. to
a roundoff error).

� Propagated error is critical as errors
may be magnified causing results to be
invalid.

� The stability of the program determines
how errors are propagated.

3/24/2014

6

Calculating the Error

� A simple way of looking at the error is
as the difference between the true
value and the actual value.

� Ie:

Error (e) = True value – Approximate
value

Calculating the Error

� Three other ways of defining the error
are:

� Absolute error

� Relative error

� Percentage error

Calculation the Error

� Absolute error.

ea = |True value – Approximate value|

ErrorXX
a

e =′−=

Calculating the Error

� Absolute error:

ea = |True value – Approximate value|

� Relative error is defined as:

ErrorXX
a

e =′−=

X

XX

r ValueTrue

Error
e

′−
==

Calculating the Error

� Percentage error is defined as:

X

XX
ee

rp

′−
== 100100

Examples

� Suppose 1.414 is used as an approx to .

� Find the absolute, relative and percentage
errors.

2

41421356.12 =

3/24/2014

7

Examples

 valueeApproximat– valueTrue=
a

e

1.414-1.41421356=∴
a

e

00021356.0=

)(errorabsolute

Examples

�

2

00021356.0=∴
r

e 310151.0 −×=

)(errorrelative
ValueTrue

Error
e

r
=

Examples

2

00021356.0=∴
r

e 310151.0 −×=

100×=∴
rp

ee %10151.0 1−×=
)(errorpercentage

