

Representation of Numbers

- Computer represent all numbers, other than integers and some fractions with imprecision.
- Numbers are stored in some approximation which can be represented by a fixed number of bits or bytes.
- There are different types of "representations" or "data types".

Representation of Numbers

- Information in the computer are stored as a groups of binary digits.
- An individual digit is called a bit.
- Bits are grouped into 8-bit collections called bytes.
- Memory is normally measured in terms of bytes.
- Bytes are further grouped into 4 or more byte groupings to make up a computer word.
- The most common word size in most modern computers is 32 bits (48 -bit bytes)
- Many programs do scientific calculations using double (64-bit) words.
- What is the largest integer value that can be expressed in 32 bits?

| Maximum Value |
| :---: | :---: |
| 11111111111111111111111111111111 |
| $2^{32}-1=4,294,967,295$ |
| |

fixed point Integer Representation

- Things to note:

1. Fixed point numbers are represented as exact.
2. Arithmetic between fixed point numbers is also exact provided the answer is within range.
3. Division is also exact if interpreted as producing an integer and discarding any remainder.

Ones and twos compliment epresentation

- Can be used for negative numbers.
- The ones compliment form of a negative number is the bitwise NOT applied to it
- Ie. The compliment of its positive counterpart
- The twos compliment form of a negative number is the bitwise NOT applied to it with a 1 added to it.

Floating point Representation

- In floating point representation, numbers are represented by a sign bit s , an integer component e, a positive integer mantissa M.

Floating point Representation

- Most computers use the IEEE representation where the floating point number is normalized.
- The two most common IEEE rep are: IEEE Short Real (Single Precision): 32 bits 1 for the sign, 8 for exponent and 23 mantissa
IEEE Long Real (Double Prec): 64 bits - 1 sign bit, 11 for exp and 52 for the mantissa

Floating Point Numbers

Example 1.
Represent 27.25 using the IEEE short real rep
First Let us convert 27.25 to binary:
11011.01

This is equal to:
0.1101101×2^{5}
In normal form

Floating Point Numbers

Example 2.
Represent 0.1 using the IEEE short real representation First Let us convert 0.1 to binary: 0.000110011001100110011001100110110110...

This is equal to:
$0.1100110011001100110011001100110011 \ldots \times 2^{-3}$
In normal form

Errors in computations

- There five types of errors in computation:

1. Mistakes
2. Random error
3. Truncation error
4. Roundoff error
5. Propagated error

Errors and Uncertainties

- Truncation or approximation errors: these occur from simplifications of mathematics so that the problem may be solved.
- For example replace of an infinite series by a finite series.
- Eg:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \approx \sum_{n=0}^{N} \frac{x^{n}}{n!}=e^{x}+\zeta(x, N)
$$

Errors and Uncertainties

- Where $\zeta(x, N)$ is the total absolute error.
- The truncation error vanishes as N is taken to infinity.
- For N much larger than x, the error is small.
- If x and N are close then the truncation error will be large.

Errors and Uncertainties

- Roundoff error: since most numbers are represented with imprecision by computers (and general restrictions) this leads to a number being lost.
- The error as result of the roundoff or truncation of digits is known as the roundoff error.
- Eg1: $\left(\frac{1}{3}\right)-\frac{2}{3}=0.6666666-0.6666667=-0.0000001 \neq 0$

Round-Off Error

If we represent the perfectly good decimal fraction 0.1 as a binary fraction we get:

$$
\begin{gathered}
0.00011001100110011001100110011011 \text { (0110 } \\
\text { repeats) }
\end{gathered}
$$

Suppose we have a computer that stores 11 bits in the mantissa. The binary fraction (after rounding) becomes:

$$
0.110011001101 \cdot 2^{-3}=0.1000061_{10}
$$

Errors and Uncertainties

- Propagated error: this is defined as an error in later steps of a program due to an earlier error.
- This error is added the local error(eg. to a roundoff error).
- Propagated error is critical as errors may be magnified causing results to be invalid.
- The stability of the program determines how errors are propagated.

Calculating the Error

- A simple way of looking at the error is as the difference between the true value and the actual value.
- Ie:

Error (e) = True value - Approximate value

Calculating the Error

- Three other ways of defining the error are:
- Absolute error
- Relative error
- Percentage error

Calculation the Error

- Absolute error.
$e_{a}=$ |True value - Approximate value \mid
$e_{a}=\left|X-X^{\prime}\right|=\mid E$ rror \mid

Calculating the Error

- Absolute error:
$e_{a}=$ |True value - Approximate value \mid
$e_{a}=\left|X-X^{\prime}\right|=|E r r o r|$
- Relative error is defined as:
$e_{r}=\left|\frac{\text { Error }}{\text { True Value }}\right|=\left|\frac{x-X^{\prime}}{X}\right|$

Calculating the Error

- Percentage error is defined as:
$e_{p}=100 e_{r}=100\left|\frac{X-X^{\prime}}{X}\right|$

Examples

- Suppose 1.414 is used as an approx to .

$$
\sqrt{2}
$$

- Find the absolute, relative and percentage errors.
$\sqrt{2}=1.41421356$

