

BOOLEAN ALGEBRA

- Formal logic: In formal logic, a statement (proposition) is a declarative sentence that is either true(1) or false (0).
- It is easier to communicate with computers using formal logic.
- Boolean variable: Takes only two values either true (1) or false (0).
- They are used as basic units of formal logic.

Boolean function and logic diagram

- Boolean function: Mapping from Boolean variables to a Boolean value.
- Truth table:
- Represents relationship between a Boolean function and its binary variables.
- It enumerates all possible combinations of arguments and the corresponding function values.

Boolean function and logic diagram

- Boolean algebra: Deals with binary variables and logic operations operating on those variables.
- Logic diagram: Composed of graphic symbols for logic gates.
- A simple circuit sketch that represents inputs and outputs of Boolean functions.

Boolean Algebra

- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

Logical Operations

- The three basic logical operations are:
- AND
- OR
- NOT
- AND is denoted by a dot (•).
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (${ }^{-}$), a single quote mark (') after, or (\sim) before the variable.

Basic Identities of Boolean Algebra (Existence of 1 and 0 element)

(1) $x+0=x$
(2) $x \cdot 0=0$
(3) $x+1=1$
(4) $x \cdot 1=1$

Basic Identities of Boolean Algebra (Existence of complement)
(5) $x+x=x$
(6) $x \cdot x=x$
(7) $x+x^{\prime}=x$
(8) $x \cdot x^{\prime}=0$

Basic Identities of Boolean Algebra
Basic Identities of Boolean Algebra (Associativity):
(11) $x+(y+z)=(x+y)+z$
(12) $x(y z)=(x y) z$

Basic Identities of Boolean Algebra (Distributivity):
(13) $x(y+z)=x y+x z$
(14) $x+y z=(x+y)(x+z)$

Basic Identities of Boolean

Algebra (DeMorgan's Theorem)
(15) $(x+y)^{\prime}=x^{\prime} y^{\prime}$
(16) $(x y)^{\prime}=x^{\prime}+y^{\prime}$

Some Properties of Boolean Algebra

- Boolean Algebra is defined in general by a set B that can have more than two values
- A two-valued Boolean algebra is also know as Switching Algebra. The Boolean set B is restricted to 0 and 1 . Switching circuits can be represented by this algebra.

Some Properties of Boolean Algebra

- The dual of an algebraic expression is obtained by interchanging + and • and interchanging 0's and 1's.
- The identities appear in dual pairs. When there is only one identity on a line the identity is selfdual, i. e., the dual expression $=$ the original expression.
- Sometimes, the dot symbol '•' (AND operator) is not written when the meaning is clear

Dual of a Boolean Expression
Example: $F=(A+\bar{C}) \cdot B+0$
dual $F=\left(A^{-} \cdot C+B\right) \cdot 1=A \cdot C+B$

- Example: $\mathrm{G}=\mathrm{X} \cdot \mathrm{Y}+(\overline{\mathrm{W}+\mathrm{Z}})$
dual $\mathrm{G}=\mathbf{X}+\mathbf{Y}) \cdot \overline{(\mathbf{W} \cdot \mathbf{Z}})=(\mathbf{X}+\mathbf{Y}) \cdot(\overline{\mathbf{W}+\mathbf{Z}})$
- Example: $\mathrm{H}=\mathrm{A} \cdot \mathrm{B}+\mathrm{A} \cdot \mathrm{C}+\mathrm{B} \cdot \mathrm{C}$
dual $H=(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}+\mathbf{C}) \cdot(\mathbf{B}+\mathbf{C})$

Boolean Operator Precedence

- The order of evaluation is:

1. Parentheses
2. NOT
3. AND

- Consequence: Parentheses appear around OR expressions
- Example: $\mathrm{F}=\mathrm{A}(\mathrm{B}+\mathrm{C})(\mathrm{C}+\mathrm{D}) \quad$ -

Function Minimization using Boolean Algebra

- Examples:

(a) $a+a b=a(1+b)=a$
(b) $a(a+b)=a \cdot a+a b=a+a b=a(1+b)=a$.

- (c) $a+a^{\prime} b=\left(a+a^{\prime}\right)(a+b)=1(a+b)$ $=a+b$
- (d) $a\left(a^{\prime}+b\right)=a \cdot a^{\prime}+a b=0+a b=a b$

The other type of question

Show that;
$1-a b+a b^{\prime}=a$
$2-(a+b)(a+b)=a$
$1-a b+a b^{\prime}=a(b+b)=a .1=a$

More Examples

Show that;
(a) $a b+a b c=a b+a c$
(b) $(a+b)(a+b+c)=a+b c$
(a) $a b+a b^{\prime} c=a\left(b+b^{\prime} c\right)$ $=a((b+b) \cdot(b+c))=a(b+c)=a b+a c$
(b) $(a+b)\left(a+b^{\prime}+c\right)$
$=(a . a+a . b+a . c+a b+b . b+b c)$
= ...

Generalized DeMorgan's Theorem
(a) $(a+b+\ldots z)^{\prime}=a^{\prime} b^{\prime} \ldots z$
(b) $(a . b \ldots z)^{\prime}=a^{\prime}+b^{\prime}+\ldots z$

DeMorgan's Theorem

Show that. $(a+b . c)^{\prime}=a^{\prime} . b^{\prime}+d^{\prime} \cdot c$

Truth Tables

- Example: Truth tables for the basic logic operations:

AND		
X	Y	$\mathrm{Z}=\mathrm{X} \cdot \mathrm{Y}$
0	0	0
0	1	0
1	0	0
1	1	1

$O R$		
X	Y	$Z=X+Y$
0	0	0
0	1	1
1	0	1
1	1	1

NOT	
X	$\mathrm{Z}=\overline{\mathrm{X}}$
0	1
1	0

Used to evaluate any logic function
Consider $\mathcal{P} X, Y, Z=X Y+Y Z$

X	Y	Z	$X Y$	\bar{Y}	$\bar{Y} Z$	$F=X Y+\bar{Y} Z$
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

Consider $\mathcal{F}(X, Y, Z)=X Y+Y Z$

Logic Gates

- A logic gate is an elementary building block of a digital circuit .
- Most logic gates have two inputs and one output.
- At any given moment, every terminal is in one of the two binary conditions low (0) or high (1), represented by different voltage levels.

```
Three Basic Logic Operations
    - OR
    - AND
    - NOT
    - Other derived logic operations
    - NOR
    - NAND
    - XOR
    - XNOR
```


hree Basic Logic Operations

```
OR
- AND
- NOT
- Other derived logic operations
- NOR
- NAND
XOR
XNOR
```


Boolean Constants and ariables

Boolean 0 and 1 do not represent actual numbers but instead represent the state, or logic level.

Logic 0	Logic 1
False	True
Off	On
Low	High
No	Yes
Open switch	Closed switch

ruth Tables

- A truth table is a means for describing how a logic circuit's output depends on the logic levels present at the circuit's

inn | Inputs | Output | |
| :--- | :--- | :--- |
| A | B | X |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

OR Gate

- The OR gate gets its name from the fact that it behaves after the fashion of the logical inclusive "or."
- The output is "true" if either or both of the inputs are "true."
- If both inputs are "false," then the output is "false."

Operation

- Boolean expression for the OR operation:

$$
x=A+B
$$

- The above expression is read as " x equals A OR B"

(a)

AND Gate

- The $A N D$ gate is so named because, if 0 is called "false" and 1 is called "true,"
- the gate acts in the same way as the logical "and" operator.

AND Operation

- Boolean expression for the AND operation: $x=A B$
- The above expression is read as "x equals
$\Lambda^{\wedge n i n}$

(a)

(b)
- An AND gate is a gate that has two or more inputs and whose output is equal to the ΔN n nrndiut of the innuite

A	B	C	$x=\mathrm{ABC}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

NOT Operation

- A logical inverter, sometimes called a NOT gate to differentiate it from other types of electronic inverter devices,
- has only one input.
- It reverses the logic state.

The NAND gate

- The NAND gate operates as an AND gate followed by a NOT gate.
- It acts in the manner of the logical operation "and" followed by negation.
- The output is "false" if both inputs are "true."
- Otherwise, the output is "true."

alternative symbol for NOR
 function

(a)

(b)

XOR (exclusive-OR) gate

- Another way of looking at this circuit is to observe that the output is 1 if the inputs are different, but 0 if the inputs are the same.

XNOR (exclusive-NOR) gate

- The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter.
- Its output is "true" if the inputs are the same, and"false" if the inputs are different

Describing Logic Circuits Algebraically

- Any logic circuits can be built from the three basic building blocks: OR, AND, NOT
- Example 1: $x=A B+C$
- Example 2: $x=(A+B) C$
- Example 3: $\bar{x}=(\bar{A}+B)$
- Example 4: $x=A B C(A+D)$

Evaluating Logic-Circuit Outputs

- $x=A B C(A+D)$
- Determine the output x given $A=0, B=1$, $\mathrm{C}=1, \mathrm{D}=1$.
- Can also determine output level from a diagram

Alternate Logic Symbols

- Rules:
- 1. Change the gate shape (AND ==> OR; OR ==> AND).
- 2. Change the bubbles (add where missing; remove if present).

