

 It enumerates all possible combinations of arguments and the corresponding function values.

Boolean function and logic diagram

- Boolean algebra: Deals with binary variables and logic operations operating on those variables.
- Logic diagram: Composed of graphic symbols for logic gates.
 - A simple circuit sketch that represents inputs and outputs of Boolean functions.

Boolean Algebra

- <u>Boolean Algebra</u>: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

Logical Operations

- The three basic logical operations are:
 - AND
 - OR
 - NOT
- AND is denoted by a dot (').
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (⁻), a single quote mark (') after, or (~) before the variable.

Operator D	efinitions							
• Operations are defined on the values "0"								
and "1" for each o	operator:							
AND	OR	NOT						
$0 \cdot 0 = 0$	0 + 0 = 0	$\overline{0} = 1$						
$0 \cdot 1 = 0$	0 + 1 = 1	$\overline{1} = 0$						
$1 \cdot 0 = 0$	1 + 0 = 1							
$1 \cdot 1 = 1$	1 + 1 = 1							

Basic Identities of Boolean Algebra (Commutativity): (9) x + y = y + x(10) xy = yx

Basic Identities of Boolean Algebra (Distributivity):

(13) x (y + z) = xy + xz (14) x + yz = (x + y)(x + z)

Some Properties of Boolean Algebra The <u>dual</u> of an algebraic expression is obtained by interchanging + and · and interchanging 0's and 1's. The identities appear in <u>dual</u> pairs. When there is only one identity on a line the identity is <u>self-dual</u>, i. e., the dual expression = the original expression. Sometimes, the dot symbol `·' (AND operator) is not written when the meaning is clear

Dual of a Boolean Expression Example: $F = (A + \overline{C}) \cdot B + 0$ dual $F = (\overline{A} \cdot C + B) \cdot 1 = \overline{A} \cdot C + B$ Example: $G = X \cdot Y + (\overline{W + Z})$ dual $G = (X+Y) \cdot (\overline{W \cdot Z}) = (X+Y) \cdot (\overline{W+Z})$ Example: $H = A \cdot B + A \cdot C + B \cdot C$ dual $H = (A+B) \cdot (A+C) \cdot (B+C)$

Show that;
1-
$$ab + ab = a$$

2- $(a + b)(a + b) = a$
1- $ab + ab = a(b+b) = a.1=a$

- Ex	Tr	u'	th Table	2S able	s fo	or the basic	naic	
op	erat X 0 1 1	tio 4 Y 0 1 0 1	$\frac{\text{AND}}{\text{Z} = X \cdot Y}$ 0 0 1	X 0 1 1	Y 0 1 0	OR Z = X+Y 0 1 1 1	N X 0 1	$ \begin{array}{c} \text{OT} \\ \overline{Z = \overline{X}} \\ 1 \\ 0 \end{array} $

Truth Tables – Cont'd						
Used t Consic	o eval ler <i>F</i> (λ	uate ai (, <i>Y</i> , <i>Z</i>)	= XY + 1	nction Y <i>Z</i>	—	
X	Y	Ζ	XΥ	Y	Ϋ́Z	$F = XY + \overline{YZ}$
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

Logic Gates

- A logic gate is an elementary building block of a digital circuit .
- Most logic gates have two inputs and one output.
- At any given moment, every terminal is in one of the two binary conditions *low* (0) or *high* (1), represented by different voltage levels.

Boolean Constants and Variables

 Boolean 0 and 1 do not represent actual numbers but instead represent the <u>state</u>, or <u>logic level</u>.

Logic 0	Logic 1
False	True
Off	On
Low	High
No	Yes
Open switch	Closed switch

hree Basic Logic Operations

- OR
- AND
- NOT
- Other derived logic operations
 - NOR
 - NAND
 - XOR
 - XNOR

OR Gate

- The OR gate gets its name from the fact that it behaves after the fashion of the logical inclusive "or."
- The output is "true" if either or both of the inputs are "true."
- If both inputs are "false," then the output is "false."

AND Gate

- The AND gate is so named because, if 0 is called "false" and 1 is called "true,"
- the gate acts in the same way as the logical "and" operator.

ПП

- The XOR (exclusive-OR) gate acts in the same way as the logical "either/or."
- The output is "true" if either, but not both, of the inputs are "true."
- The output is "false" if both inputs are "false" or if both inputs are "true."

XOR (exclusive-OR) gate Another way of looking at this circuit is to observe that the output is 1 if the inputs are different, but 0 if the inputs

are the same.

