

Why Statistics?

$>$ Determine how to analyze data from designed experiments in order to build knowledge and continuously improve.
$>$ Develop an understanding of some basic ideas of statistical reliability and the analysis data.

Why Statistics?

$>$ To develop an appreciation for variability and how it effects products and processes.
$>$ Study methods that can be used to help solve problems,
$>$ build knowledge and continuously improve products and processes.
$>$ Build an appreciation for the advantages and limitations of informed observation and experimentation.

Data and Statistics

Data consists of information coming from observations, counts, measurements, or responses.

Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.

A population is the collection of all outcomes, responses, measurement, or counts that are of interest.

A sample is a subset of a population.

Example: In a recent survey, 250 university students at CBU were asked if they smoked cigarettes regularly. 35 of the students said yes. Identify the population and the sample.

Parameters \& Statistics

A parameter is a numerical description of a population characteristic.

A statistic is a numerical description of a sample
characteristic.

$$
\begin{gathered}
\underline{\text { Parameter }} \longrightarrow \text { Population } \\
\underline{\underline{\text { Statistic }} \longrightarrow} \longrightarrow \underline{=} \text { Sample }
\end{gathered}
$$

Parameters \& Statistics
 Example:

Decide whether the numerical value describes a population parameter or a sample statistic.
a.) A recent survey of a sample of 450 university students reported that the average weekly income for students is $\mathrm{K} 600,000$.

Because the average of $\mathrm{K} 600,000$ is based on a sample, this is a sample statistic.
b.) The average weekly income for all students is K500, 000

Because the average of $\mathrm{K} 500,000$ is based on a population, this is a population parameter

Types of sampling techniques

$>$ Random Sampling
> Sampling in which the data is collected using chance methods or random numbers.
> Systematic Sampling
> Sampling in which data is obtained by selecting every k th object.

Types of sampling techniques

> Convenience Sampling
> Sampling in which data which is readily available is used.
$>$ Stratified Sampling
> Sampling in which the population is divided into groups (called strata) according to some characteristic.

- Each of these strata is then sampled using one of the other sampling techniques.

Types of sampling techniques
> Cluster Sampling
$>$ Sampling in which the population is divided into groups (usually geographically).
> Some of these groups are randomly selected, and then all of the elements in those groups are selected.

Branches of Statistics

The study of statistics has two major branches: descriptive statistics and inferential statistics.

Descriptive and Inferential Statistics

Example:

In a recent study, volunteers who had less than 6 hours of sleep were four times more likely to answer incorrectly on a science test than were participants who had at least 8 hours of sleep. Decide which part is the descriptive statistic and what conclusion might be drawn using inferential statistics.

The statement "four times more likely to answer incorrectly" is a descriptive statistic. An inference drawn from the sample is that all individuals sleeping less than 6 hours are more likely to answer science question incorrectly than individuals who sleep at least 8 hours.

Descriptive and Inferential Statistics

Note: The development of Inferential Statistics has occurred only since the early 1900's.

Examples:

1. The medical team that develops a new vaccine for a disease is interested in what would happen if the vaccine were administered to all people in the population.
2. The marketing expert may test a product in a few "representative" areas, from the resulting information, he/she will draw conclusion about what would happen if the product were made available to all potential customers.

```
The Essential Elements of a Statistical Problem
3. The collection and analysis of data.
4. The procedure for making inferences about the population based upon the sample information.
5. The provision of a measure of goodness (reliability) of the inference. The most important step, because without the reliability the inference has no meaning and is useless.
Note, above steps to solve any statistical problem are sequential.
```


Types of Data
Data sets can consist of two types of data: qualitative data (Attribute) and quantitative (Numerical) data.

Types of Data

a. Discrete Data: Can take on a finite number of values or a countable infinity (as many values as there are whole numbers such as $0,1,2$. ..). Examples:

1. Number of kids in the family.
2. Number of students in the class.
3. Number of calls received by the switch board each day
4. Number of flaws in a yard of material.

- Ordinal Scale

$>$ In addition to classification
> members can be ordered according to relative size or quality.
> For example, products ranked by consumers $1=$ best, $2=$ second best etc.

Ratio Level of Measurement

Data at the ratio level of measurement are similar to the interval level, but a zero entry is meaningful.

FREQUENCY DISTRIBUTIONS

- Frequency (f) is used to describe the number of times a value or a range of values occurs in a data set.
- Cumulative frequencies are used to describe the number of observations less than, or greater than a specific value

Shoe-Size	Shoe Width	Gender
10.5	B	M
6.0	B	F
9.5	D	M
8.5	A	F
7.0	B	F
10.5	C	M
7.0	C	F
8.5	D	M
6.5	B	F
9.5	C	M
7.0	B	F
7.5	B	F
9.0	D	M
6.5	A	F
7.5	B	F

Frequency distribution table

- To construct a frequency table,
- start with the smallest shoe size and list all shoe sizes as a column of numbers.
- The frequency of occurrence of that shoe size is written to the right.

- Note that the sum of the column of frequencies is equal to the number of scores or size of the sample (N $=15$).
- This is a necessary, but not sufficient, property in order to insure that the frequency table has been correctly calculated.
- It is not sufficient because two errors could have been made, canceling each other out.

Shoe Size	Absolute Frequency	Cumplative Frequency	Relative Freq
6.0	1	1	0.07
6.5	2	3	0.13
7.0	3	6	0.2
7.5	2	8	0.13
8.0	0	8	0
8.5	2	10	0.13
9.0	1	11	0.07
9.5	2	13	0.13
10.0	0	13	0
10.5	2	15	0.13
Total	15		

Grouped Frequency Distributions

- These distributions used for data sets that contain a
large number of observations.
- The data is grouped into a number of classes.

Grouped Frequency Distributions

- The classes must be continuous.
- There are no gaps in a frequency distribution.
- Classes that have no values in them must be included (unless it's the first or last class which are dropped).

Creating a Grouped Frequency Distribution

- Find the class width by dividing the range by the number of classes and rounding up.
- There are two things to be careful of here. You must round up, not off.
- If the range divided by the number of classes gives an integer value (no remainder), then you can either add one to the number of classes or add one to the class width.

Creating a Grouped Frequency Distribution

- To find the upper limit of the first class, subtract one from the lower limit of the second class.
- Then continue to add the class width to this upper limit to find the rest of the upper limits.
- Find the boundaries by subtracting 0.5 units from the lower limits and adding 0.5 units from the upper limits.
- The boundaries are also half-way between the upper limit of one class and the lower limit of the next class.

Creating a Grouped Frequency Distribution

- Tally the data.
- Find the frequencies.
- Find the cumulative frequencies.
- If necessary, find the relative frequencies and/or relative cumulative frequencies.

| Life of AA batteries, in Minutes | | | |
| :--- | :--- | :--- | :---: | \(\left.\begin{array}{|l|l|}\hline \begin{array}{l}Battery life, minutes

(x)\end{array} \& Absolute frequency\end{array} $$
\begin{array}{l}\text { Cummulative } \\
\text { frequency }\end{array}
$$\right]\)

histogram

- A histogram is drawn by plotting the scores (midpoints) on the X -axis and the frequencies on the Y-axis.
- A bar is drawn for each score value, the width of the bar corresponding to the real limits of the interval and the height corresponding to the frequency of the occurrence of the score value.
- An example histogram is presented below

Example of a Histogram

- A cumulative frequency graph or ogive is a graph that represents the cumulative frequencies for the classes in a frequency distribution.

Other Types of Graphs

- A bar chart or bar graph is a chart with rectangular bars with lengths proportional to the values that they represent.
- The bars can be plotted vertically or horizontally.
- Bar graph use frequency distributions of discrete variables, often nominal or ordinal data.
- Bars represent separate groups, so they should be separated

A pie chart

- A pie chart (or a circle graph) is a circular chart divided into sectors, illustrating proportion.
- In a pie chart, the arc length of each sector (and consequently its central angle and area), is proportional to the quantity it represents.

A pie chart

- When angles are measured with 1 turn as unit then a number of percent is identified with the same number of centiturns.
- Together, the sectors create a full disk.
- It is named for its resemblance to a pie which has been sliced.

Measures of Central Tendency

- There are three main measures of central tendency: the mean, median, and mode.
- The purpose of measures of central tendency is to identify the location of the center of various distributions.
- For example, let's consider the data below.
- This data represents the number of miles per gallon that 30 selected four-wheel drive sports utility vehicles obtained in city driving.

12	17	16	14	16	18	
16	18	17	16	17	15	
15	16	16	15	16	19	
10	14	15	11	15	15	
19	13	16	18	16	20	

The Mean

- The mean is the arithmetic average of all the observations in the data.
- It is also the fulcrum or, "balancing point", of the data.
- For instance, if you were to place the histogram of the gas mileage data onto a seesaw,
- the mean would be the point that would allow the histogram to be perfectly balanced.

Measures of Central Tendency
Use the formula

$$
\mu=\Sigma_{i}\left(\mathbf{f}_{\mathbf{i}} * \mathbf{x}_{\mathbf{i}}\right) / \Sigma_{\mathrm{i}} \mathbf{f}_{\mathrm{i}}
$$

Where $x_{i}=$ the midpoint of the $i^{\text {th }}$ class
and $f_{i}=$ the number of items in the $i^{\text {th }}$ class

- Here frequency of class interval $15-20$ is maximum.
- So, it is the modal class
- $1=$ the lower limit of modal class $=15$
- $\mathrm{fi}=$ frequency of modal class $=7$
- fo = frequency of class preceding the modal class $=5$
- f2 = frequency of class succeeding the modal class $=\mathbf{2}$
- $\mathrm{h}=$ size of class intervals $=5$

| Solution |
| :--- | :--- |
| Wages of workers Number of workers
 3800 12
 4100 13
 4400 25
 4900 17
 5200 15
 6500 12
 6000 Total
 100 |

Wages of workers	Number of workers
3800	12
upto 4100	$12+13=25$
upto 4400	$25+25=50$
upto 4900	$50+17=67$
upto 5200	$67+15=82$
upto 5500	$82+12=94$
upto 6000	$94+6=100$

Solution

- Here, the number of observations (n) $=100$
- This is an even number, so the median is average of (n $/ 2$)th and (n/2+1)th observations
- i.e. average of $(100 / 2)$ th and $[(100 / 2)+1]$ th observation.
- i.e. average of 50th and 51th observations.
- To find these observations let us arrange the data in the following manner.

Median of unGrouped Data

- The frequencies arranged in above manner are known as cumulative frequencies.
- So, the 50th observation is 4400 and 51 th observation is 4900
- Median $=4400+4900 / 2$
- Median = 9300 $/ 2$
- Median $=4650$
- This means 50\% workers got wages less than Rs. 4650 and another 50% got more than Rs. 4650.

Less and More than cumulative frequencies

- We will know the method for calculating median of grouped data. But before that let
- us know about the cumulative frequency of
- (a) Less than type
- (b) More than type
- for the given grouped data

Less than cumulative frequencies

- Let us construct a cumulative frequency table of less than type for the above data.
- Here 2 students got the marks between o and 10 which means 2 students have marks less than 10.
- Now 12 students got marks between 10-20.
- So the students who got marks less than 20 are $(2+12)$ i.e. 14 students.
- Proceeding in the similar way, we get the following cumulative frequency table.

More than cumulative frequencies

- Let us know the method of calculating cumulative frequency table of more than type for the above data.
- Here, all students got marks more than or equal to o.
- Which means 50 students got more than or equal to o marks.
- Since 2 students got less than 10 marks.

The grouped data is Marks $0-10$ Number of Student $10-20$$\| 2$	
$20-30$	12
$30-40$	22
$40-50$	8

the table is known as cumulative frequency table of less than type Marks Number of Student Less than 10 2 Less than 20 $2+12=14$ Less than 30 $14+22=36$ Less than 40 $36+8=44$ Less than 50 $44+6=50$

More than cumulative frequencies

- Thus ($50-2$) i.e. 48 students got more than equal to
10 marks.
- Preceding in the same way $48-2=36$ students got
more than 20 marks.
- Hence, we get the cumulative frequency distribution
table of mare than type.

More than cumulative frequencies Marks Number of Student More than 0$\quad 50$	
More than 10	$50-2=48$
Less than 20	$48-12=36$
Less than 30	$36-22=14$
Less than 40	$14-6=6$

