Measures of Dispersion

- Defenition
- Range
- Interquartile Range
- Variance and Standard Deviation

Definition

Measures of dispersion are descriptive statistics that describe how similar a set of scores are to each other

- The more similar the scores are to each other, the lower the measure of dispersion will be
- The less similar the scores are to each other, the higher the measure of dispersion will be
- In general, the more spread out a distribution is, the larger the measure of dispersion will be

Measures of Dispersion Definition Measure of dispersion estimate the spread or Which of the variability of a distribution around the centre distributions of scores has the larger 100 Dispersion is a key concept in statistical dispersion? thinking. The upper distribution The basic question being asked is how much has more dispersion do the scores deviate around the Mean? because the scores are • The more "bunched up" around the mean the 100 more spread out better your ability to make accurate + That is, they are less predictions. similar to each other 1 2 3 4 5 6 7 8 9 10

Measures of Dispersion

- If all values are the same, then they all equal the mean. There is no variability.
- Variability exists when some values are different from (above or below) the mean.
- We will discuss the following measures of spread: range, quartiles, variance, and standard deviation

The Range

- The *range* is defined as the difference between the largest score in the set of data and the smallest score in the set of data, X_L - X_S
- What is the range of the following data:
 4 8 1 6 6 2 9 3 6 9
- The largest score (X_L) is 9; the smallest score (X_S) is 1; the range is X_L X_S = 9
 -1 = 8

A pet shop owner health. The weights of th	r weighs his mice ne 80 mice are sho	e every week to check their own below:
weight (g)	Frequency (f)	Cumulative Frequency
$0 < w \leq 10$	3	3
$10 < w \le 20$	5	8
20 <i>< w</i> ≤ 30	5	13
30 < <i>w</i> ≤ 40	9	22
40 < <i>w</i> ≤ 50	11	33
$50 < w \le 60$	15	48
60 < <i>w</i> ≤ 70	14	62
70 < <i>w</i> ≤ 80	8	70
80 < <i>w</i> ≤ 90	6	76
90 < <i>w</i> ≤100	4	80

Example	from Text	
Observations	Deviations	Squared deviations
x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
1792	1792-1600 = 192	$(192)^2 = 36,864$
1666	1666 - 1600 = 66	(66) ² = 4,356
1362	1362 - 1600 = -238	(-238) ² = 56,644
1614	1614 - 1600 = 14	(14) ² = 196
1460	1460 -1600 = -140	$(-140)^2 = 19,600$
1867	1867 - 1600 = 267	$(267)^2 = 71,289$
1439	1439 -1600 = -161	(-161) ² = 25,921
	sum = 0	sum = 214,870
		28

Variance Populati	e Formu ion	la of a	
Х	X^2	Χ-μ	$(X-\mu)^2$
9	81	2	4
8	64	1	1
6	36	-1	1
5	25	-2	4
8	64	1	1
6	36	-1	1
$\Sigma = 42$	$\Sigma = 306$	$\Sigma = 0$	$\Sigma = 12$
			31

	Measuring Dispersion of (Grouped Data Daily Renta
-	Stated Class Limits	Frequency (f)
	50 - 59	2.00
	60 - 69	3.00
	70 - 79	5.00
	80 - 89	3.00
	90 - 99	2.00
	Totals	n = 15.00

$$Q_{1} = L_{Q_{1}} + \left(\frac{\frac{n}{4} - F}{f_{Q_{1}}}\right)i$$

= 10.5 + $\left(\frac{12.5 - 8}{14}\right)10$
= 13.7143

health. The weights of th	ne 80 mice are sh	own below:
weight (g)	Frequency (1)	Cumulative Frequency
$0 < w \leq 10$	3	3
$10 < w \le 20$	5	8
20 <i>< w</i> ≤ 30	5	13
30 < <i>w</i> ≤ 40	9	22
40 < <i>w</i> ≤ 50	11	33
$50 < w \le 60$	15	48
$60 < w \le 70$	14	62
70 < <i>w</i> ≤ 80	8	70
80 < <i>w</i> ≤ 90	6	76
90 < <i>w</i> ≤100	4	80

	00	
Stated Class Limits	Frequency (f)	x
50 - 59	2.00	54.50
60 - 69	3.00	64.50
70 - 79	5.00	74.50
80 - 89	3.00	84.50
90 - 99	2.00	94.50
Totals	n = 15.00	

Data			. o apo
Stated Class Limits	Frequency (f)	х	fx
50 - 59	2.00	54.50	109.00
60 - 69	3.00	64.50	193.50
70 - 79	5.00	74.50	372.50
80 - 89	3.00	84.50	253.50
90 - 99	2.00	94.50	189.00
Totals	n = 15.00		1,117.50

Standard	deviation	for Grouped	
Data			

Stated Class Limits	Frequency (f)	Х	fx	X ²
50 - 59	2.00	54.50	109.00	2,970.25
60 - 69	3.00	64.50	193.50	4,160.25
70 - 79	5.00	74.50	372.50	5,550.25
80 - 89	3.00	84.50	253.50	7,140.25
90 - 99	2.00	94.50	189.00	8,930.25
Totals	n = 15.00		1,117.50	

Stated Class Limits	Frequency (f)	X	fx	χ²	fx ²
50 - 59	2.00	54.50	109.00	2,970.25	5,940.50
60 - 69	3.00	64.50	193.50	4,160.25	12,480.75
70 - 79	5.00	74.50	372.50	5,550.25	27,751.25
80 - 89	3.00	84.50	253.50	7,140.25	21,420.75
90 - 99	2.00	94.50	189.00	8,930.25	17,860.50
Totals	n = 15.00		1,117.50		85.453.75

$\begin{tabular}{ c c c c c c } \hline Yield per Hectare (in quintals) & Number of Field (in quintals) & & & & \\ \hline 31-35 & 2 & & & \\ 36-40 & 3 & & & \\ 41-45 & 8 & & & \\ 46-50 & 12 & & & \\ 51-55 & 16 & & & \\ 56-60 & 5 & & & \\ 56-60 & 5 & & & \\ \hline \end{array}$	Yield per Hectare (in quintals) Number of Fields 31-35 2 36-40 3 41-45 8 46-50 12 51-55 16 56-60 5 61-65 2 66-70 2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Yield per Hectare (in quintals)	Number of Fields
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 36-40 & & 3 \\ 41-45 & & 8 \\ 46-50 & & 12 \\ 51-55 & & 16 \\ 56-60 & & 5 \\ 61-65 & & 2 \\ 66-70 & & 2 \end{array}$	31-35	2
$\begin{array}{ccccc} 41-45 & 8 \\ 46-50 & 12 \\ 51-55 & 16 \\ 56-60 & 5 \\ 61-65 & 2 \end{array}$	$\begin{array}{ccccc} 41-45 & 8 \\ 46-50 & 12 \\ 51-55 & 16 \\ 56-60 & 5 \\ 61-65 & 2 \\ 66-70 & 2 \end{array}$	36-40	3
$\begin{array}{cccc} 46-50 & 12 \\ 51-55 & 16 \\ 56-60 & 5 \\ 61-55 & 2 \end{array}$	46-50 12 51-55 16 56-60 5 61-65 2 66-70 2	41-45	8
51-55 16 56-60 5	51-55 16 56-60 5 61-65 2 66-70 2	46-50	12
56-60 5	56-60 5 61-65 2 66-70 2	51-55	16
	61-65 2 66-70 2	56-60	5
61-65 2	66-70 2	61-65	2
66-70 2		66-70	2

Yield per Hectare	No. of	Class
(in quintal)	Fields	Marks
31-35	2	33
36-40	3	38
41-45	8	43
46-50	12	48
51 - 55	16	53
56 - 60	5	58
61 - 65	2	63
66 - 70	2	68
Total	50	

Yield per Hecta	re No. of	Class	$(x_i - \overline{x})$
(in quintal)	Fields	Marks	
31-35	2	33	-17
36-40	3	38	-12
41-45	8	43	-7
46-50	12	48	-2
51 - 55	16	53	+3
56 - 60	5	58	+8
61-65	2	63	+13
66 - 70	2	68	+18
Total	50		

Vield non Heate	na Na af	Class	(->2
r leid per Hecia		Class	$(x_i - x)$	(x _i – x) [–]
(in quintal)	Fields	Marks		
31-35	2	33	-17	289
36-40	3	38	-12	144
41-45	8	43	-7	49
46-50	12	48	$^{-2}$	4
51 - 55	16	53	+3	9
56 - 60	5	58	+8	64
61-65	2	63	+13	169
66 - 70	2	68	+18	324
Total	50			

Yield per Hecta	are No. of	Class	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$	$f_i (x_i - \overline{x})^2$
(in quintal)	Fields	Marks			
31-35	2	33	-17	289	578
36-40	3	38	-12	144	432
41-45	8	43	_7	49	392
46-50	12	48	-2	4	48
51-55	16	53	+3	9	144
56-60	5	58	+8	64	320
61-65	2	63	+13	169	338
66 - 70	2	68	+18	324	648
Total	50				2900

Standard deviation for Grouped Data
Variance $S^2 = (S)^2 = (12.5)^2 = 156.25 \approx 156.3$

In a study obtained	/ on effectivene	ess of a med	licine over a	group of p	atients, the	e following re	culte wara
					,		ouno were
Percent	age of relief	0-20	20-40	40-60	60-80	80-100]
No. of	patients	10	10	25	15	40	1
Find the	variance and st	tandard dev	riation.				_

•	In a study on ages of available :	mothers at	the first o	shild birth	in a villa	ige, the f	ollowing	data were
	Age (in years) at first child birth	18-20	20-22	22-24	24-26	26-28	28-30	30-32
	No. of mothers	130	110	80	74	50	40	16
	Find the variance and	the standar	rd deviatio	11.				