## Measures of Dispersion

- Defenition
- Range
- Interquartile Range
- Variance and Standard Deviation


## Definition

Measures of dispersion are descriptive statistics that describe how similar a set of scores are to each other

- The more similar the scores are to each other, the lower the measure of dispersion will be
- The less similar the scores are to each other, the higher the measure of dispersion will be
- In general, the more spread out a distribution is, the larger the measure of dispersion will be


## Definition

- Measure of dispersion estimate the spread or variability of a distribution around the centre
- Dispersion is a key concept in statistical thinking.
- The basic question being asked is how much do the scores deviate around the Mean?
- The more "bunched up" around the mean the better your ability to make accurate predictions.


## Measures of Dispersion

- Which of the distributions of scores has the larger dispersion?
${ }^{4}$ The upper distribution has more dispersion because the scores are more spread out
${ }_{-1+}$ That is, they are less similar to each other




## Measures of Dispersion

- If all values are the same, then they all equal the mean. There is no variability.
- Variability exists when some values are different from (above or below) the mean.
- We will discuss the following measures of spread: range, quartiles, variance, and standard deviation


## The Range

- The range is defined as the difference between the largest score in the set of data and the smallest score in the set of data, $\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{S}}$
- What is the range of the following data: $\begin{array}{llllllllll}4 & 8 & 1 & 6 & 6 & 9 & 3 & 6\end{array}$
- The largest score $\left(X_{L}\right)$ is 9 ; the smallest score $\left(X_{S}\right)$ is 1 ; the range is $X_{L}-X_{S}=9$ $-1=8$


## When To Use the Range

- The range is used when
- you have ordinal data or
- you are presenting your results to people with little or no knowledge of statistics
- The range is rarely used in scientific work as it is fairly insensitive
- It depends on only two scores in the set of data, $X_{L}$ and $X_{S}$
- Two very different sets of data can have the same range: $\begin{array}{llllllllll}1 & 1 & 1 & 1 & 9\end{array}$ vs 13579 7



## Obtaining the Quartiles

- Order the data.
- For $\mathbf{Q}_{\mathbf{2}}$, just find the median.
- For $\mathbf{Q}_{\mathbf{1}}$, look at the lower half of the data values, those to the left of the median location; find the median of this lower half.
- Three numbers which divide the ordered data into four equal sized groups.
- $\mathrm{Q}_{1}$ has $25 \%$ of the data below it.
- $\mathrm{Q}_{2}$ has $50 \%$ of the data below it. (Median)
- $\mathrm{Q}_{3}$ has $75 \%$ of the data below it.


## Quartiles

## Obtaining the Quartiles

- For $\mathbf{Q}_{\mathbf{3}}$, look at the upper half of the data values, those to the right of the median location; find the median of this upper half.


## Obtaining the Quartiles

- Position of i-th Quartile: position of point
- $\mathrm{Qi}=(\mathrm{i}(\mathrm{n}+1)) / 4$
- Eg. Data in Ordered Array:
- $11 \quad 12 \widehat{1}^{13} 161616 \quad 17 \quad 18 \quad 21 \quad 22$
- Position of Q1 $=(\mathbf{1}(\mathbf{9 + 1})) / 4$
- $=10 / 4=2.5$
- Q1=12.5



## The interquartile range

is the distance between the lower quartile and the upper quartile.


## The interquartile range

- gives the spread of the middle $50 \%$ of the data - often the bit you are most interested in.

$$
\left. 11 \right\rvert\, 1516
$$

- It is not affectea dy any extreme values.
- Difference Between Third \& First Quartiles: Interquartile Range =Q3-Q1
- =19.5-12.5=7
- Not Affected by Extreme Values

- From this graph we can now find estimates of the median, and upper and lower quartiles
- The lower quartile is the $20^{\text {th }}$ piece of data $1 / 4$ of the total pieces of data
- The upper quartile is the $60^{\text {th }}$ piece of data $3 / 4$ of the total pieces of data


## Variance and Standard

## Deviation

- variability exists when some values are different from (above or below) the mean.
- Each data value has an associated deviation from the mean:

$$
x_{i}-\bar{x}
$$



## Deviations

- what is a typical deviation from the mean? (standard deviation)
- small values of this typical deviation indicate small variability in the data
- large values of this typical deviation indicate large variability in the data



Variance and Standard Deviation
Example from Text

Metabolic rates of 7 men (cal./24hr.) : $\begin{array}{lllllll}1792 & 1666 & 1362 & 1614 & 1460 & 1867 & 1439\end{array}$

$$
\bar{x}=\frac{1792+1666+1362+1614+1460+1867+1439}{7}
$$

$$
=\frac{11,200}{7}
$$

$$
=1600
$$

Variance and Standard Deviation
Example from Text
$s^{2}=\frac{214,870}{7-1}=35,811.67$
$s=\sqrt{35,811.67}=189.24$ calories

## Variance Formula of a <br> Population

- When calculating variance, it is often easier to use a computational formula which is algebraically equivalent to the definitional

$$
\sigma^{2}=\frac{\sum \mathrm{X}^{2}-\frac{\left(\sum \mathrm{X}\right)^{2}}{\mathrm{~N}}}{\mathrm{~N}}=\frac{\sum(\mathrm{X}-\mu)^{2}}{\mathrm{~N}}
$$

中 $\sigma^{2}$ is the population variance, X is a score, $\mu$ is the population mean, and N is the number of scores ${ }_{30}$

| Variance Formula of a <br> Population |
| :---: |
| X $\mathrm{X}^{2}$ $\mathrm{x}-\mu$ $(\mathrm{X}-\mu)^{2}$ <br> 9 81 2 4 <br> 8 64 1 1 <br> 6 36 -1 1 <br> 5 25 -2 4 <br> 8 64 1 1 <br> 6 36 -1 1 <br> $\Sigma=42$ $\Sigma=306$ $\Sigma=0$ $\Sigma=12$ |


| Computational Formula Example |  |
| :---: | :---: |
| $\begin{aligned} & \sigma^{2}=\frac{\sum \mathrm{X}^{2}-\frac{\left(\sum X\right)^{2}}{N}}{} \\ & =\frac{306-\frac{2^{2}}{6}}{6} \\ & =\frac{306-\frac{294}{6}}{6} \\ & =\frac{=\frac{12}{6}}{=2} \\ & =2 \end{aligned}$ | $\begin{aligned} & \sigma^{\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N}} \\ & =\frac{12}{6} \\ & =2 \end{aligned}$ |


| Measuring Dispersion of Grouped Data <br> Daily Renta |  |
| :---: | :---: |
| Stated Class Limits Frequency (f) <br> $50-59$ 2.00 <br> $60-69$ 3.00 <br> $70-79$ 5.00 <br> $80-89$ 3.00 <br> $90-99$ $n=15.00$ <br> Totals  |  |



## Quartiles

Using the same method of calculation as in the Median,
we can get $Q_{1}$ and $Q_{3}$ equation as follows:

$$
Q_{1}=L_{Q_{1}}+\left(\frac{\frac{n}{4}-F}{f_{Q_{1}}}\right) i \quad Q_{3}=L_{Q_{3}}+\left(\frac{\frac{3 n}{4}-F}{f_{Q_{s}}}\right) i
$$

Example: Based on the grouped data below, find the Interquartile Range

| Time to travel to <br> work | Frequency |
| :---: | :---: |
| $1-10$ | 8 |
| $11-20$ | 14 |
| $21-30$ | 12 |
| $31-40$ | 9 |
| $41-50$ | 7 |



Class $\mathrm{Q}_{1}=\frac{\mathrm{n}}{4}=\frac{50}{4}=12.5$
Class $\mathrm{Q}_{1}$ is the $2^{\text {nd }}$ class Therefore,


- From this graph we can now find estimates of the median, and upper and lower quartiles
- The lower quartile is the $20^{\text {th }}$ piece of data $1 / 4$ of the total pieces of data
- The upper quartile is the $60^{\text {th }}$ piece of data $3 / 4$ of the total pieces of data


| Standard deviation for Grouped Data |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Stated Class Limits | Frequency (f) | x | fx | $\mathrm{x}^{2}$ |
| 50-59 | 2.00 | 54.50 | 109.00 | 2,970.25 |
| 60.69 | 3.00 | 64.50 | 193.50 | 4,160.25 |
| 70.79 | 5.00 | 74.50 | 372.50 | 5,550.25 |
| 80.89 | 3.00 | 84.50 | 253.50 | 7,140.25 |
| 90-99 | 2.00 | 94.50 | 189.00 | 8,930.25 |
| Totals | $n=15.00$ |  | 1,117.50 |  |


| Standard deviation for Grouped Data |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Staled Class Limits | Frequeny (i) | * | f* | $\mathrm{x}^{2}$ | $5 x^{2}$ |
| 50.59 | 200 | 54.50 | 10900 | 2,90.25 | 5,940.50 |
| 60.69 | 3.00 | 64.50 | 193.50 | 4,160.25 | 12.480 .75 |
| 70.79 | 5.00 | 74.50 | 372.50 | 5,56.25 | 27,751.25 |
| 80.89 | 3.00 | 84.50 | 235.50 | 7,40.25 | 21,420.75 |
| 90.99 | 200 | 94.50 | 189.00 | 8,902.25 | 17,800.50 |
| Todals | $n=15.00$ |  | 1,117.50\| |  | 85,553.75 |



## Alternative formula

$$
\sigma_{\mathrm{g}}^{2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{K}}\left[\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}\right]}{\mathrm{N}},
$$




In a study on ages of mothers at the first child biith in a village, the following data were availale:

| Age (in years) <br> at first child birth | $18-20$ | $20-22$ | $22-24$ | $24-26$ | $26-28$ | $28-30$ | $30-32$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of mothers | 130 | 110 | 80 | 74 | 50 | 40 | 16 |

Find the variance and the standard deviation.

