
3/24/2014

1

BIT 325 PARALLEL PROCESSING
� ASSESSMENT

◦ CA – 40%

� TESTS – 30%

� PRESENTATIONS – 10%

◦ EXAM – 60%

� CLASS TIME TABLE

◦ SUNDAYS – 16:00 – 18:00

� SYLLUBUS & RECOMMENDED BOOKS

◦ CLASS REPRESENTATIVE

◦ Lecture Notes:
www.Lechaamwe.weebly.com

Parallel processing Parallel processing

� Overview

� Clarification of parallel machines

� Some General Parallel Terminology

� Shared memory and message passing

What is Parallel Computing?What is Parallel Computing?

� Traditionally, software has been written
for serial computation:

◦ To be run on a single computer having a single
Central Processing Unit (CPU);

◦ A problem is broken into a discrete series of
instructions.

◦ Instructions are executed one after another.

◦ Only one instruction may execute at any
moment in time.

What is Parallel Computing?What is Parallel Computing?

What is Parallel Computing?What is Parallel Computing?

� Parallel computing is the simultaneous use
of multiple computer resources to solve a
computational problem:

◦ To be run using multiple CPUs

◦ A problem is broken into discrete parts that can
be solved concurrently

◦ Each part is further broken down to a series of
instructions

◦ Instructions from each part execute
simultaneously on different CPUs

What is Parallel Computing?What is Parallel Computing?

3/24/2014

2

What is Parallel Computing?What is Parallel Computing?

� The compute resources might be:

◦ A single computer with multiple processors;

◦ An arbitrary number of computers connected
by a network;

◦ A combination of both.

What is Parallel Computing?What is Parallel Computing?

� The computational problem should be
able to:

◦ Be broken apart into discrete pieces of work
that can be solved simultaneously;

◦ Execute multiple program instructions at any
moment in time;

◦ Be solved in less time with multiple computer
resources than with a single computer
resource.

Why Use Parallel Computing?Why Use Parallel Computing?

� Save time and/or money:

◦ In theory, throwing more resources at a task
will shorten its time to completion, with
potential cost savings.

◦ Parallel computers can be built from cheap,
commodity components.

Why Use Parallel Computing?Why Use Parallel Computing?

� Solve larger problems:

◦ Many problems are so large and/or complex
that it is impractical or impossible to solve
them on a single computer,

◦ especially given limited computer memory.

◦ Web search engines/databases processing
millions of transactions per second

Why Use Parallel Computing?Why Use Parallel Computing?

� Provide concurrency:

◦ A single computer resource can only do one
thing at a time.

◦ Multiple computing resources can be doing many
things simultaneously.

◦ For example, the Access Grid (accessgrid.org)
provides a global collaboration network where
people from around the world can meet and
conduct work "virtually".

Why Use Parallel Computing?Why Use Parallel Computing?

� Use of non-local resources:

◦ Using computer resources on a wide area
network, or even the Internet when local
computer resources are scarce.

◦ For example: SETI@home
(setiathome.berkeley.edu) uses 2.9 million
computers in 253 countries.

◦ Folding@home (folding.stanford.edu) uses
over 450,000 cpus globally

3/24/2014

3

Why Use Parallel Computing?Why Use Parallel Computing?

� Limits to serial computing:

◦ Both physical and practical reasons pose significant
constraints to simply building ever faster serial
computers:

� Transmission speeds - the speed of a serial computer is
directly dependent upon how fast data can move through
hardware.

� Absolute limits are the speed of light (30 cm/nanosecond) and the
transmission limit of copper wire (9 cm/nanosecond).

� Increasing speeds necessitate increasing proximity of processing
elements.

Why Use Parallel Computing?Why Use Parallel Computing?

◦ Limits to miniaturization - processor
technology is allowing an increasing
number of transistors to be placed on a
chip.

� However, even with molecular or atomic-
level components, a limit will be reached on
how small components can be.

Why Use Parallel Computing?Why Use Parallel Computing?

◦ Economic limitations - it is increasingly
expensive to make a single processor faster.

� Using a larger number of moderately fast
commodity processors to achieve the same (or
better) performance is less expensive.

Classification of Parallel Classification of Parallel
Machines Machines
�Models of Computation (Flynn 1966)

� Any computer, whether sequential or
parallel, operates by executing
instructions on data.

� a stream of instructions (the algorithm)
tells the computer what to do.

� a stream of data (the input) is affected by
these instructions.

Classification of Parallel Classification of Parallel
Machines Machines
� Depending on whether there is one or
several of these streams, we have four
classes of computers.

� Single Instruction Stream, Single Data Stream
: SISD.

� Multiple Instruction Stream, Single Data
Stream : MISD.

� Single Instruction Stream, Multiple Data
Stream : SIMD.

� Multiple Instruction Stream, Multiple Data
Stream : MIMD.

SISD Computers SISD Computers

� This is the standard sequential computer.

� A single processing unit receives a single
stream of instructions that operate on a
single stream of data.

3/24/2014

4

MISD Computers MISD Computers

� N processors, each with its own control
unit, share a common memory.

MISD Computers MISD Computers

� There are N streams of instructions
(algorithms / programs) and one stream
of data.

� Parallelism is achieved by letting the
processors do different things at the same
time on the same datum.

� MISD machines are useful in
computations where the same input is to
be subjected to several different
operations.

ExampleExample

� Checking whether a number Z is prime.

� A simple solution is to try all possible
divisions of Z.

� Assume the number of processors, N, is
given by N = Z-2.

� All processors take Z as input and tries to
divide it by its associated divisor.

� So it is possible in one step to check if Z
is prime.

MISD Computers MISD Computers

� More realistically if N < Z-2 then a subset
of divisors would be assigned to each
processor.

� For most applications MISD are very
awkward to use and no commercial
machines exist with this design.

SIMD Computers SIMD Computers

� All N identical processors operate under
the control of a single instruction stream
issued by a central control unit.

� (to ease understanding assume that each
processor holds the same identical
program.)

� There are N data streams, one per
processor so different data can be used in
each processor.

SIMD ComputersSIMD Computers

3/24/2014

5

SIMD ComputersSIMD Computers

� The processors operate synchronously
and a global clock is used to ensure
lockstep operation.

� i.e. at each step (global clock tick) all
processors execute the same instruction,
each on a different datum

SIMD ComputersSIMD Computers

� Array processors such as the ICL DAP
(Distributed Array Processor)

� and pipelined vector computers such as
the CRAY 1 & 2 and CYBER 205 fit into
the SIMD category.

� SIMD machines are particularly useful to
solve problems which have a regular
structure. i.e. the same instruction can be
applied to subsets of the data.

ExampleExample

� Adding two matrices A + B = C.
� Say we have two matrices A and B of order
2 and we have 4 processors.

� A11 + B11 = C11 ... A12 + B12 = C12
� A21 + B21 = C21 ... A22 + B22 = C22
� The same instruction is issued to all 4
processors (add the two numbers) and all
processors execute the instructions
simultaneously.

� It takes one step as opposed to four steps
on a sequential machine.

SIMD ComputersSIMD Computers

� An instruction could be a simple one (eg
adding two numbers) or a complex one (eg
merging two lists of numbers).

� Similarly the datum may be simple (one
number) or complex (several numbers).

� Sometimes it may be necessary to have only
a subset of the processors execute an
instruction i.e. only some data needs to be
operated on for that instruction.

MIMD Computers (multiprocessors MIMD Computers (multiprocessors
//multicomputersmulticomputers))

� This is the most general and most
powerful of our classification.

�We have N processors, N streams of
instructions and

� N streams of data.

MIMD ComputersMIMD Computers

3/24/2014

6

MIMD ComputersMIMD Computers

� Each processor operates under the control of an
instruction stream issued by its own control
unit.(i.e. each processor is capable of executing its
own program on a different data.

� This means that the processors operate
asynchronously (typically) i.e. can be doing
different things on different data at the same time.

� As with SIMD computers communication of data
or results between processors can be via a
shared memory or interconnection network.

MIMD ComputersMIMD Computers

� MIMD computers with shared memory are
known as multiprocessors or tightly
coupled machines.

� Examples are ENCORE, MULTIMAX,
SEQUENT & BALANCE.

� MIMD computers with an interconnection
network are known as multicomputers or
loosely coupled machines.

� Examples are INTEL iPSC, NCUBE/7 and
transputer networks.

MIMD ComputersMIMD Computers

� Note: Multicomputers are sometimes
referred to as distributed systems.

� This is INCORRECT.

� Distributed systems should, for example,
refer to a network of personal workstations
(such as SUN's) and

� even though the number of processing units
can be quite large the communication in
such systems is currently too slow to allow
close operation on one job.

Potential of the 4 classesPotential of the 4 classes

Some General Parallel Some General Parallel
TerminologyTerminology

� Supercomputing / High Performance Computing
(HPC)

◦ Using the world's fastest and largest computers
to solve large problems

�Node

◦ A standalone "computer in a box". Usually
comprised of multiple CPUs/processors/cores.

◦ Nodes are networked together to comprise a
supercomputer.

Parallel TerminologiesParallel Terminologies

� CPU / Socket / Processor / Core

◦ In the past, a CPU (Central Processing Unit)
was a singular execution component for a
computer.

◦ Then, multiple CPUs were incorporated into a
node.

◦ Then, individual CPUs were subdivided into
multiple "cores", each being a unique execution
unit.

3/24/2014

7

Parallel TerminologiesParallel Terminologies

� CPUs with multiple cores are sometimes called
"sockets" - vendor dependent.

� The result is a node with multiple CPUs, each
containing multiple cores.

Parallel TerminologiesParallel Terminologies

� Task

◦ A logically discrete section of computational
work.

◦ A task is typically a program or program-like
set of instructions that is executed by a
processor.

◦ A parallel program consists of multiple tasks
running on multiple processors.

Parallel TerminologiesParallel Terminologies

� Pipelining

◦ Breaking a task into steps performed by
different processor units, with inputs
streaming through, much like an assembly line;
a type of parallel computing.

Parallel TerminologiesParallel Terminologies

� Shared Memory

◦ From a strictly hardware point of view,
describes a computer architecture where all
processors have direct (usually bus based)
access to common physical memory.

◦ In a programming sense, it describes a model
where parallel tasks all have the same
"picture" of memory and can directly address
and access the same logical memory locations
regardless of where the physical memory
actually exists.

Parallel TerminologiesParallel Terminologies

� Symmetric Multi-Processor (SMP)

◦ Hardware architecture where multiple
processors share a single address space and
access to all resources; shared memory
computing.

Parallel TerminologiesParallel Terminologies

� Distributed Memory

◦ In hardware, refers to network based
memory access for physical memory that is
not common.

◦ As a programming model, tasks can only
logically "see" local machine memory and
must use communications to access memory
on other machines where other tasks are
executing.

3/24/2014

8

Parallel TerminologiesParallel Terminologies

� Communications

◦ Parallel tasks typically need to exchange data.
There are several ways this can be
accomplished, such as through a shared
memory bus or over a network, however the
actual event of data exchange is commonly
referred to as communications regardless of
the method employed.

Parallel TerminologiesParallel Terminologies

� Synchronization

◦ The coordination of parallel tasks in real time,
very often associated with communications.

◦ Often implemented by establishing a
synchronization point within an application
where a task may not proceed further until
another task(s) reaches the same or logically
equivalent point.

Parallel TerminologiesParallel Terminologies

◦ Synchronization usually involves waiting by at
least one task, and can therefore cause a
parallel application's wall clock execution time
to increase.

� Granularity

◦ In parallel computing, granularity is a
qualitative measure of the ratio of
computation to communication.

Parallel TerminologiesParallel Terminologies

◦ Coarse: relatively large amounts of
computational work are done between
communication events

◦ Fine: relatively small amounts of
computational work are done between
communication events

Parallel TerminologiesParallel Terminologies

�Observed Speedup

◦ Observed speedup of a code which has been
parallelized, defined as:

� One of the simplest and most widely used
indicators for a parallel program's
performance.

wall-clock time of serial execution

wall-clock time of parallel execution

Parallel TerminologiesParallel Terminologies

� Parallel Overhead

◦ The amount of time required to coordinate
parallel tasks, as opposed to doing useful
work.

◦ Parallel overhead can include factors such as:

� Task start-up time

� Synchronizations

� Data communications

� Software overhead imposed by parallel compilers,
libraries, tools, operating system, etc.

� Task termination time

3/24/2014

9

Parallel TerminologiesParallel Terminologies

�Massively Parallel

◦ Refers to the hardware that comprises a given
parallel system - having many processors.

◦ The meaning of "many" keeps increasing, but
currently, the largest parallel computers can
be comprised of processors numbering in the
hundreds of thousands.

Parallel TerminologiesParallel Terminologies

� Embarrassingly Parallel

◦ Solving many similar, but independent tasks
simultaneously; little to no need for
coordination between the tasks.

� Scalability

◦ Refers to a parallel system's (hardware and/or
software) ability to demonstrate a
proportionate increase in parallel speedup
with the addition of more processors.

◦ Factors that contribute to scalability include:

� Hardware - particularly memory-cpu bandwidths
and network communications

� Application algorithm

� Parallel overhead related

� Characteristics of your specific application and
coding

Parallel Computer Memory Parallel Computer Memory
ArchitecturesArchitectures
� Shared memory

◦ Uniform Memory Access (UMA)

◦ Non-Uniform Memory Access (NUMA)

� Distributed Memory

SHARED MEMORYSHARED MEMORY

� This consists of a global address space
which is accessible by all N processors.

� A processor can communicate to another
by writing into the global memory where
the second processor can read it.

SHARED MEMORY and SHARED SHARED MEMORY and SHARED

VARIABLESVARIABLES

3/24/2014

10

SHARED MEMORYSHARED MEMORY

� Shared memory solves the
interprocessor communication problem
but introduces the problem of
simultaneous accessing of the same
location in the memory.
Consider.

SHARED MEMORYSHARED MEMORY

� i.e. x is a shared variable accessible by P1
and P2. Depending on certain factors, x=1
or x=2 or x=3.

� if P1 executes and completes x=x+1
before P2 reads the value of x from
memory then x=3 similarly if P2 executes
and completes x=x+2 before P1 reads the
value of x from memory then x=3

SHARED MEMORYSHARED MEMORY

� if P1 and P2 read the value of x before either
has updated it then the processor which
finishes last will determine the value of x.

� if P1 finishes last the value is x=1

� if P2 finishes last the value is x=2

� In a multiuser, real time environment the
processor which finishes last would vary
from run to run - so the final value would
vary.

SHARED MEMORYSHARED MEMORY

� Also, even if they finish at the same time only one
value of x can be stored in the location for x.

� This gives rise to NON-DETERMINANCY -
when a parallel program with the same input data
yields different results on different runs.

� Non- determinancy is caused by race
conditions.

� A race is when two statements in concurrent
tasks access the same memory location,

� at least one of which is a write,
� and there is no guaranteed execution ordering
between accesses.

SHARED MEMORYSHARED MEMORY

� The problem of non-determinancy would be
solved by synchronizing the use of shared
data.

� That is; if x=x+1 and x=x+2 were mutually
exclusive statements i.e. could not be
executed at the same time, then x=3 always.

� Shared memory computers e.g. SEQUENT ,
ENCORE are often implemented by
incorporating a fast bus to connect
processors to memory.

� However because the bus has a finite bandwidth i.e.
finite amount of data it can carry at any instance, then
as the number of processors increase the
contention for the bus becomes a problem.

� So it is only feasible to allow P processors to access P
memory locations simultaneously for relatively small
P (< 30)

3/24/2014

11

� Shared memory machines can be divided
into two main classes based upon
memory access times: UMA and NUMA.

Uniform Memory Access Uniform Memory Access
(UMA):(UMA):
� Most commonly represented today by
Symmetric Multiprocessor (SMP)
machines

� Identical processors

� Equal access and access times to memory

� Sometimes called CC-UMA - Cache
Coherent UMA.

� Cache coherent means if one processor
updates a location in shared memory, all
the other processors know about the
update.

� Cache coherency is accomplished at the
hardware level.

NonNon--Uniform Memory Access Uniform Memory Access
(NUMA):(NUMA):
� Often made by physically linking two or
more SMPs

� One SMP can directly access memory of
another SMP

� Not all processors have equal access time
to all memories

� Memory access across link is slower

� If cache coherency is maintained, then
may also be called CC-NUMA - Cache
Coherent NUMA

Distributed MemoryDistributed Memory

� Like shared memory systems, distributed
memory systems vary widely but share a
common characteristic.

� Distributed memory systems require a
communication network to connect inter-
processor memory.

3/24/2014

12

� Processors have their own local memory.

� Memory addresses in one processor do
not map to another processor,

� so there is no concept of global address
space across all processors.

� Because each processor has its own local
memory, it operates independently.

� Changes it makes to its local memory
have no effect on the memory of other
processors.

� Hence, the concept of cache coherency
does not apply.

�When a processor needs access to data
in another processor, it is usually the task
of the programmer to explicitly define
how and when data is communicated.
Synchronization between tasks is likewise
the programmer's responsibility.

� The network "fabric" used for data
transfer varies widely, though it can can
be as simple as Ethernet.

