Outline

\square Classes of Shared memory systems
\square Types of Interconnection Networks
\square Metrics for Interconnection Networks

SHARED MEMORY and SHARED VARIABLES

\square Depending on whether 2 or more processors can gain access to the same memory location simultaneously,
\square we have 4 subclasses of shared memory computers

SHARED MEMORY and SHARED VARIABLES

\square Exclusive Read, Concurrent Write (ERCW) SM Computers
Multiple processors are allowed to write into the same memory location but read access remains exclusive.
\square Concurrent Read, Concurrent Write (CRCW) SM Computers
\square Both multiple read and multiple write privileges are allowed.

Recap

\square Where there are N processors each with its own individual data stream i.e. SIMD. and MIMD.,
\square it is usually necessary to communicate data / results between processors.
\square This can be done in two main ways.
\square Using a SHARED MEMORY and SHARED VARIABLES
\square And using Interconnection Networks.

SHARED MEMORY and SHARED VARIABLES

\square Exclusive Read, Exclusive Write (EREW) SM Computers
\square Access to memory locations is exclusive i.e. no 2 processors are allowed to simultaneously read from or write into the same location.
\square Concurrent Read, Exclusive Write (CREW) SM Computers
\square Multiple processors are allowed to read from the same location but write is still exclusive. .i.e. no 2 processors are allowed to write into the same location simultaneously

SHARED MEMORY and SHARED VARIABLES

\square Allowing concurrent read access to the same address should pose no problems (except perhaps to the result of a calculation)
\square Conceptually, each of the several processors reading from that location makes a copy of its contents and stores it in its own register (RAM)

SHARED MEMORY and SHARED VARIABLES

\square Problems arise however, with concurrent write access.
\square If several processors are trying to simultaneously store (potentially different) data at the same address, which of them should succeed ?
\square i.e. we need a deterministic way of specifying the contents of a memory location after a concurrent write operation.

SHARED MEMORY and SHARED VARIABLES

\square It is only feasible to allow P processors to access P memory locations simultaneously for relatively small P(<30)
\square Usually because of the cost of the communication.

SHARED MEMORY and SHARED
 VARIABLES

\square Some ways of resolving write conflicts include :-
\square Assign priorities to the processors and accept value from highest priority processor
\square All the processors are allowed to write, provided that the quantities they are attempting to store are equal, otherwise access is denied to ALL processors.

Interconnection Networks

\square We have seen that one way for processors to communicate data is to use a shared memory and shared variables.
\square However this is unrealistic for large numbers of processors.
\square A more realistic assumption is that each processor has its own private memory and data communication takes place using message passing via an INTERCONNECTION NETWORK.

Interconnection Networks

\square The interconnection network plays a central role in determining the overall performance of a multicomputer system.
\square If the network cannot provide adequate performance, for a particular application, nodes will frequently be forced to wait for data to arrive.
\square Some of the more important networks include

Interconnection Networks

\square Fully connected or all-to-all
Mesh
Rings
Hypercube
X - Tree
\square Shuffle Exchange
Butterfly
Cube Connected Cycles

Interconnection Networks -dynamic

\square Multi - Stage Interconnection network
\square Cross - Bar Interconnection Network

Fully connected or all-to-all

\square Each node has $\mathrm{N}-1$ connections ($\mathrm{N}-1$ nearest neighbours)
\square giving a total of $\mathrm{N}(\mathrm{N}-1) / 2$ connections for the network.
\square Even though this is the best network to have,
\square the high number of connections per node mean this network can only be implemented for small values of N .

Fully connected or all-to-all

\square This is the most powerful interconnection network (topology): each node is directly connected to ALL other nodes.

Mesh (Torus)

\square In a mesh network, the nodes are arranged in a k dimensional lattice of width w, giving a total of $w^{\wedge} k$ nodes.
\square Usually $\mathrm{k}=1$ (linear array) or $\mathrm{k}=2$ (2D array) e.g. ICL DAP.
\square Communication is allowed only between neighbouring nodes.
\square All interior nodes are connected to 2 k other nodes.

Rings

\square It is equivalent to a 1 D mesh with wraparound connections.
\square One drawback to this network is that some data transfers may require $N / 2$ links to be traversed e.g. A and B above (3).
\square This can be reduced by using a chordal ring
\square This is a simple ring with cross or chordal links between nodes on opposite sides

Hypercube Connection (Binary nCube)

\square Hypercube networks consist of $\mathrm{N}=2^{\wedge} \mathrm{k}$ nodes
\square arranged in a k dimensional hypercube.
\square The nodes are numbered $0,1, \ldots .2^{\wedge} k-1$
\square and two nodes are connected if their binary labels differ by exactly one bit

Rings

\square A simple ring is just a linear array with the end nodes linked.

Rings

E.eg 10 hyperculse (2 modes)

E.g-2 2 Sh hpercube (4 modes)

E-q 3D hypercube (E modes)

Metrics for Interconnection Networks

\square Metrics provide a framework to compare and evaluate interconnection networks.
\square The main metrics are:

- Network connectivity
- Network diameter
- Narrowness
\square Network expansion increments

Hypercube Connection (Binary nCube)
$\square \mathrm{K}$ dimensional hypercube is formed by combining two k-1 dimensional hypercubes and connecting corresponding nodes i.e. hypercubes are recursive.
each node is connected to k other nodes i.e. each is of degree k

Network Connectivity

\square Network nodes and communication links sometimes fail and must be removed from service for repair.
\square When components do fail the network should continue to function with reduced capacity.
\square Network connectivity measures the resiliency of a network and
\square its ability to continue operation despite disabled components

Network Connectivity

\square i.e. connectivity is the minimum number of nodes or links that must fail to partition the network into two or more disjoint networks
\square The larger the connectivity for a network the better the network is able to cope with failures.

Network Diameter

\square The diameter of a network is the maximum internode distance
\square i.e. it is the maximum number of links that must be traversed to send a message to any node along a shortest path.
\square The lower the diameter of a network the shorter the time to send a message from one node to the node farthest away from it.

Narrowness

\square This is a measure of congestion in a network and is calculated as follows:
\square Partition the network into two groups of processors A and B
\square where the number of processors in each group is Na and Nb and assume $\mathrm{Nb}<=\mathrm{Na}$.
\square Now count the number of interconnections between A and B call this I.

Network Expansion Increments

\square A network should be expandable i.e.
\square it should be possible to create larger and more powerful multicomputer systems by simply adding more nodes to the network.
\square For reasons of cost, it is better to have the option of small increments since this allows you to upgrade your network to the size you require (i.e. flexibility) within a particular budget.

Other metrics

\square Bisection bandwidth
\square the speed with which data from two halves of the network can be transposed across an arbitrary cut
\square Cost
\square Proportional to the number of communication links

Other metrics
\square Bisection bandwidth
\square the speed with which data from two halves of the
network can be transposed across an arbitrary cut
\square Cost
\square Proportional to the number of communication links

Narrowness

\square Find the maximum value of Nb / I for all partitionings of the network.
\square This is the narrowness of the network.
\square The idea is that if the narrowness is high ($\mathrm{Nb}>\mathrm{I}$) then if the group B processors want to send messages to group A, congestion in the network will be high (since there are fewer links than processors)

Network Expansion Increments

\square E.g. an 8 node linear array can be expanded in increments of 1 node but a 3 dimensional hypercube can be expanded only by adding another 3D hypercube. (i.e. 8 nodes)

