
3/24/2014

1

Parallel Algorithm Construction

� Parallel algorithms for MIMD machines can be
divided into 3 categories,

� these are :

�Pipelined Algorithms / Algorithmic
Parallelism

�Partitioned Algorithms / Geometric
Parallelism

�Asynchronous / Relaxed Algorithms

Pipelined Algorithms / Algorithmic

Parallelism

� A pipelined algorithm is an ordered set of (
possibly different) processes in which the
output of each process is the input to its
successor.

� The input to the first process is the input to the
algorithm

� The output from the last process is the output of
the algorithm.

Pipelined Algorithms

� Typically each processor forms part of a
pipeline and

� performs only a small part of the algorithm.

� Data then flows through the system (pipeline)
being operated on by each processor in
succession.

Example

� Say it takes 3 steps A, B & C to assemble a widget
and assume each step takes one unit of time

� Sequential widget assembly machine:

� Spends 1 unit of time doing step A followed by 1
unit of time doing step B, followed by 1 unit of time
doing step C

� So a sequential widget assembler produces 1
widget in 3 time units, 2 in 6 time units etc.
i.e. one widget every 3 units

Example

� Pipelined widget assembly machine

�Say we use a 3 segment pipeline where
each of the subtasks (A, B or C) is assigned
to a segment

�i.e. the machine is split into 3 smaller
machines; one to do step A, one for step B
and one for step C and which can operate
simultaneously.

Example

� The first machine performs step A on a new
widget every time step and

� passes the partially assembled widget to the
second machine which performs step B.

� This is then passed onto the third machine to
perform step C

3/24/2014

2

Example

� This produces the first widget in 3 time units (as
the sequential machine),

� but after this initial startup time one widget
appears every time step.

� i.e. the second widget appears at time 4
the third widget appears at time 5 etc.

Example

So the final result looks like this Pipelined Algorithms

� In general

�if L is the number of steps to be performed

�and T is the time for each step

�and n is the number of items (widgets)

�then Time Sequential = LTn

�and Time Parallel = [L + n-1]T

Pipelined Algorithms

� T = 1, L = 100, n = 10^6

� then Tseq = 10^8 and Tpipe = 100 + 10^6 - 1 =
10^6 + 99

� Speedup = Tseq / Tpipe = 10^8 / (10^6 +99) =
100

� i.e. 100 fold increase in speed.

� In general as n tends to infinity speedup tends to L.

Geometric Parallelism / Partitioned

Algorithms

� These algorithms arise when there is a natural way

to decompose the data set into smaller "chunks" of
data,

� which are then allocated to individual processors.

� Thus each processor contains more or less the same
code but operates on a subset of the total data.

�

3/24/2014

3

Partitioned Algorithms

� The solution to these subproblems are then

combined to form the complete solution.

� Depending on the algorithm being solved this

combining of solutions usually implies

� communication synchronization among the
processors.

� Synchronization means constraining a particular
ordering of events.

Example

� if data needs to be communicated between

processors after each iteration of a numerical
calculation then this implies synchronization between

processes.

� Thus partitioned algorithms are sometimes called
synchronous algorithms

Partitioned Algorithms

� To illustrate the difference between pipelined
and partitioned algorithms consider the
following:

�Say an algotithm consists of 4 parts A, B, C
and D and

�this algorithm is to operate on a data set E
consisting of 4 subsets E1, E2 , E3 and E4

�(e.g. divide up matrix into submatrix)

Partitioned Algorithms

� The pipelined algorithm would consist of 4

processors performing A, B, C, or D.

� The complete data set would then pass through all 4

processors.

Partitioned Algorithms

� However in the partitioned algorithm the four

processors all perform A, B, C and D but only on a
subset of the data

Partitioned Algorithms

� i.e. In pipelined algorithms the algorithm is
distributed among the processors whereas in
partitioned algorithms the data is distributed
among the processors.

3/24/2014

4

Example

� Say we want to calculate Fi = cos(sin e^sqr(xi)) for

x1, x2 ,....x6 using 4 processors.

� Pipelined Version

Example

� F1 is produced in 4 time units
F2 is produced at time 5
i.e. time = 4 + (6-1) = 9 units
==> SPEEDUP = 24 / 9 = 2.6

Example

� Partitioned Version

� This time each processor performs the complete
algorithm i.e. cos(sin e^sqr(x)) but on its own data.

Example

� i.e. time = 8 units
==> SPEEDUP = 24 / 8 = 3
==> EFFICIENCY = 75%

� Efficiency is calculated by dividing speedup by
number of processors

� E=S/n

Asynchronous / Relaxed Parallelism

� In relaxed algotithms there is no explicit

dependency between processes,

� as occurs in synchronized algorithms.

� Instead relaxed algorithms never wait for input.

� If they are ready they use the most recently
available data

Relaxed Parallelism

� To illustrate this consider the following.

� Say we have two processors A and B. A produces a
sequence of numbers a1, a2 ..

� B inputs ai and performs some calculation F which
uses ai.

� Say that B runs much faster than A.

3/24/2014

5

Example

� Synchronous Operation

� A produces a1 passes it to B which calculates
F1;

� A produces a2 passes it to B which calculates
F2;

� i.e. B waits for A to finish (since B is faster than
A) etc..

Example

� Asynchronous Operation

� A produces a1 passes it to B which calculates F1

� but now A is still in the process of computing a2

� so instead of waiting B carries on and calculates F2
(based on old data i.e. a1 and therefore may not
be the same as F2 above)and

� continues to calculate F using the old data until a
new input arrives

� e.g. Fnew = Fold + ai

Relaxed Parallelism

� The idea in using asynchronous algorithms is that all
processors are kept busy and never remain idle
(unlike synchronous algorithms) so speedup is
maximized.

� A drawback is that they are difficult to analyse (
because we do not know what data is being used)
and

� also an algorithm that is known to work (e.g.
converge) in synchronous mode may not work (e.g
diverge) in asynchronous mode.

Relaxed Parallelism

� Consider the Newton Raphson iteration for solving

� F (x) = 0

� where F is some non-linear function

� i.e. Xn+1 = Xn - F(Xn)/F'(Xn)......(1)

generates a sequence of approximations to the
root, starting from a value X0.

Relaxed Parallelism

� Say we have 3 processors

� P1 : given x, P1 calculates F (x) in time t1, units and
sends it to P3

� P2 :given y, P2 calculates F'(y) in time t2 units and
sends it to P3

� P3 : given a, b, c, P3 calculates d = a - b/c in time

t3 units;

� if | d-a | > Epsilon then d is sent to P1 and P2

otherwise d is output.

Example

� Serial Mode

�P1 computes F(Xn)

�then P2 computes F'(Xn)

�then P3 computes Xn+1 using (1)

�So time per iteration is t1 + t2 + t3

�If k iterations are necessary for convergence
then total time is k (t1 + t2 + t3)

3/24/2014

6

Example

� Synchronous Parallel Mode.

� P1 and P2 compute F(Xn) and F'(Xn) simultaneously and

� when BOTH have finished the values F(Xn) and F'(Xn)
are used by P3 to compute Xn+1

� Time per iteration is max(t1, t2) + t3

� Again k iterations will be necessary so total time is k
[max(t1, t2) + t3]

X1 = X0 - F(X0)/F'(X0) ...etc

Relaxed Parallelism

� Asynchronous Parallel Mode

� P1 and P2 begin computing as soon as a new input
value is made available by P3 and they are ready to
receive it,

� P3 computes a new value using (1) as soon as EITHER
P1 OR P2 provide a new input

� i.e. (1) is now of the form

� Xn+1 = Xn - F(SXi)/F'(Xj)

