
3/24/2014

1

Parallel Programming Models

� Shared Memory (without threads) 

� Threads 

� Distributed Memory / Message Passing 

� Data Parallel 

� Hybrid 

� Single Program Multiple Data (SPMD) 

� Multiple Program Multiple Data (MPMD) 

Parallel Programming Models

� Parallel programming models exist as an 
abstraction above hardware and memory 
architectures. 

� These models are NOT specific to a particular type 
of machine or memory architecture. 

� Any of these models can be implemented on any 
underlying hardware. 

Shared Memory Model (without 

threads)

� In this programming model, tasks share a common 

address space, which they read and write to 
asynchronously. 

� Various mechanisms such as locks may be used to 
control access to the shared memory. 

� An advantage is that the notion of data "ownership" 

is lacking, 

� so there is no need to specify explicitly the 

communication of data between tasks. 

Shared Memory Model (without 

threads)

� An important disadvantage is that it becomes more 

difficult to understand and manage data locality.

� Keeping data local to the processor that works on it 
conserves memory accesses, cache refreshes and bus 
traffic that occurs when multiple processors use the 
same data. 

� Unfortunately, controlling data locality is hard to 
understand and beyond the control of the average user. 

Implementations

� Native compilers and/or hardware translate user 

program variables into actual memory addresses, 
which are global. 

� On stand-alone machines, this is straightforward. 

� On distributed shared memory machines, such as the 
SGI Origin, memory is physically distributed across 

a network of machines, 

� but made global through specialized hardware and 

software. 

Threads Model

� This is a type of shared memory programming. 

� In this model, a single process can have multiple, 
concurrent execution paths. 

� An analogy that can be used to describe threads is

� the concept of a single program that includes a 
number of subroutines: 



3/24/2014

2

Threads Model Example Threads Model Example

� The main program a.out is scheduled to run by the native 
operating system. 

� a.out loads and acquires all of the necessary system and 
user resources to run. 

� a.out performs some serial work, and then creates a 
number of tasks (threads) that can be scheduled and 
run by the operating system concurrently. 

Threads Model Example

� Each thread has local data, but also, shares the entire 
resources of a.out. 

� This saves the overhead associated with replicating a 
program's resources for each thread. 

� Each thread also benefits from a global memory view 
because it shares the memory space of a.out. 

Threads Model Example

� A thread's work may best be described as a subroutine 
within the main program. 

� Any thread can execute any subroutine at the same 
time as other threads. 

� Threads communicate with each other through global 
memory (updating address locations). 

Threads Model Example

� This requires synchronization constructs to ensure that 
more than one thread is not updating the same global 
address at any time. 

� Threads can come and go, 

� but a.out remains present to provide the necessary 
shared resources until the application has completed.

Implementations:

� From a programming perspective, threads 

implementations commonly comprise: 

� A library of subroutines that are called from within 
parallel source code 

� A set of compiler directives imbedded in either serial or 
parallel source code 



3/24/2014

3

Implementations:

� In both cases, the programmer is responsible for 

determining all parallelism. 

� Threaded implementations are not new in 

computing. 

� Historically, hardware vendors have implemented 
their own proprietary versions of threads. 

Implementations:

� These implementations differed substantially from 

each other making it difficult for programmers to 
develop portable threaded applications. 

� Unrelated standardization efforts have resulted in 
two very different implementations of threads: 
POSIX Threads and OpenMP. 

POSIX Threads

� Library based; requires parallel coding 

� Specified by the IEEE POSIX 1003.1c standard (1995). 

� C Language only 

� Commonly referred to as Pthreads. 

POSIX Threads

� Most hardware vendors now offer Pthreads in addition 
to their proprietary threads implementations. 

� Very explicit parallelism; requires significant 
programmer attention to detail. 

OpenMP

� Compiler directive based; can use serial code 

� Jointly defined and endorsed by a group of major 
computer hardware and software vendors. The 
OpenMP Fortran API was released October 28, 1997. 
The C/C++ API was released in late 1998. 

OpenMP

� Portable / multi-platform, including Unix and Windows 
NT platforms 

� Available in C/C++ and Fortran implementations 

� Can be very easy and simple to use - provides for 
"incremental parallelism" 

� Microsoft has its own implementation for threads, 
which is not related to the UNIX POSIX standard or 

OpenMP. 



3/24/2014

4

Distributed Memory / Message 

Passing Model

� This model demonstrates the following 

characteristics: 

� A set of tasks that use their own local memory during 
computation. 

� Multiple tasks can reside on the same physical machine 
and/or across an arbitrary number of machines. 

Distributed Memory / Message 

Passing Model

� Tasks exchange data through communications by 
sending and receiving messages. 

� Data transfer usually requires cooperative operations 
to be performed by each process. 

� For example, a send operation must have a matching 
receive operation. 

Distributed Memory / Message 

Passing Model
Implementations

� From a programming perspective, message passing 

implementations usually comprise a library of 
subroutines. 

� Calls to these subroutines are imbedded in source 
code. 

� The programmer is responsible for determining all 

parallelism. 

Implementations

� Historically, a variety of message passing libraries 

have been available since the 1980s. 

� These implementations differed substantially from 

each other making it difficult for programmers to 
develop portable applications. 

� In 1992, the MPI Forum was formed with the 

primary goal of establishing a standard interface 
for message passing implementations. 

Implementations

� Part 1 of the Message Passing Interface (MPI) was 

released in 1994. Part 2 (MPI-2) was released in 
1996.

� MPI is now the "de facto" industry standard for 
message passing, 

� replacing virtually all other message passing 

implementations used for production work. 



3/24/2014

5

Implementations

� MPI implementations exist for virtually all popular 

parallel computing platforms.

� Not all implementations include everything in both 

MPI1 and MPI2. 

Data Parallel Model

� The data parallel model demonstrates the following 

characteristics: 

� Most of the parallel work focuses on performing 
operations on a data set. 

� The data set is typically organized into a common 
structure, such as an array or cube. 

� A set of tasks work collectively on the same data 
structure, however, each task works on a different 
partition of the same data structure. 

Data Parallel Model

� Tasks perform the same operation on their partition of 
work, for example, "add 4 to every array element". 

� On shared memory architectures, all tasks may have 
access to the data structure through global memory. 

� On distributed memory architectures the data structure 
is split up and resides as "chunks" in the local memory 
of each task. 

Data Parallel Model

Implementations

� Programming with the data parallel model is 

usually accomplished by writing a program with 
data parallel constructs. 

� The constructs can be calls to a data parallel 
subroutine library or,

� compiler directives recognized by a data parallel 

compiler. 

Hybrid Model

� A hybrid model combines more than one of the 

previously described programming models. 

� Currently, a common example of a hybrid model is 

the combination of the message passing model 
(MPI) with the threads model (OpenMP). 

� Threads perform computationally intensive kernels using 
local, on-node data 

� Communications between processes on different nodes 
occurs over the network using MPI 



3/24/2014

6

Hybrid Model

� This model lends itself well to the increasingly 
common hardware environment of clustered 
multi/many-core machines. 

� Another similar and increasingly popular example 
of a hybrid model is using MPI with GPU (Graphics 
Processing Unit) programming. 
� GPUs perform computationally intensive kernels using 

local, on-node data 

� Communications between processes on different nodes 
occurs over the network using MPI 

Hybrid Model

Single Program Multiple Data 

(SPMD):

� SPMD is actually a "high level" programming model 

that can be built upon any combination of the 
previously mentioned parallel programming models. 

� SINGLE PROGRAM: 

� All tasks execute their copy of the same program 
simultaneously. 

� This program can be threads, message passing, 
data parallel or hybrid. 

SPMD

� MULTIPLE DATA: 

� All tasks may use different data 

� SPMD programs usually have the necessary logic 

programmed into them 

� to allow different tasks to branch or conditionally 
execute only those parts of the program they are 

designed to execute. 

SPMD

� That is, tasks do not necessarily have to execute the 

entire program –

� perhaps only a portion of it. 

� The SPMD model, using message passing or hybrid 
programming, 

� is probably the most commonly used parallel 
programming model for multi-node clusters

SPMD



3/24/2014

7

Multiple Program Multiple Data 

(MPMD):

� Like SPMD, MPMD is actually a "high level" 

programming model that can be built upon any 
combination of the previously mentioned parallel 

programming models. 

� MULTIPLE PROGRAM: 

� Tasks may execute different programs 

simultaneously. 

� The programs can be threads, message passing, 

data parallel or hybrid. 

MPMD

� MULTIPLE DATA: 

� All tasks may use different data 

� MPMD applications are not as common as SPMD 

applications, 

� but may be better suited for certain types of 
problems, 

� particularly those that lend themselves better to 
functional decomposition than domain 

decomposition.

MPMD


