
3/24/2014

1

Parallel Algorithm Construction

Parallel Programming Models

Designing Parallel Programs

� Automatic vs. Manual Parallelization

� Understand the Problem and the Program

� Communications

� Synchronization

� Data Dependencies

Designing Parallel Programs

� Load Balancing

� Granularity

� I/O

� Limits and Costs of Parallel Programming

� Performance Analysis and Tuning

Automatic vs. Manual Parallelization

• Designing and developing parallel programs has

characteristically been a very manual process.

• The programmer is typically responsible for both

identifying and actually implementing parallelism.

• Very often, manually developing parallel codes is a
time consuming, complex, error-prone and iterative

process.

Automatic vs. Manual Parallelization

• For a number of years now, various tools have been

available to assist the programmer with converting
serial programs into parallel programs.

• The most common type of tool used to automatically
parallelize a serial program is a parallelizing
compiler or pre-processor.

Automatic vs. Manual Parallelization

• A parallelizing compiler generally works in two

different ways:

– Fully Automatic

• The compiler analyzes the source code and identifies
opportunities for parallelism.

3/24/2014

2

Automatic vs. Manual Parallelization

• The analysis includes identifying inhibitors to
parallelism and possibly a cost weighting on
whether or not the parallelism would actually
improve performance.

• Loops (do, for) loops are the most frequent target
for automatic parallelization.

Automatic vs. Manual Parallelization

– Programmer Directed

• Using "compiler directives" or possibly compiler
flags, the programmer explicitly tells the compiler
how to parallelize the code.

• May be able to be used in conjunction with some
degree of automatic parallelization also.

Automatic vs. Manual Parallelization

• If you are beginning with an existing serial code

and have time or budget constraints,

• then automatic parallelization may be the answer.

Automatic vs. Manual Parallelization

• However, there are several important caveats that

apply to automatic parallelization:

– Wrong results may be produced

– Performance may actually degrade

– Much less flexible than manual parallelization

Automatic vs. Manual Parallelization

– Limited to a subset (mostly loops) of code

– May actually not parallelize code if the analysis
suggests there are inhibitors or the code is too
complex

• Parallel algorithms for MIMD machines discussed

earlier applies to the manual method of developing

parallel codes.

recap

�Pipelined Algorithms / Algorithmic
Parallelism

�Partitioned Algorithms / Geometric
Parallelism

�Asynchronous / Relaxed Algorithms

3/24/2014

3

Understand the Problem and the

Program

� Undoubtedly, the first step in developing parallel
software is to first understand the problem that
you wish to solve in parallel.

� If you are starting with a serial program, this
necessitates understanding the existing code also.

� Before spending time in an attempt to develop a
parallel solution for a problem,

� determine whether or not the problem is one that
can actually be parallelized.

Example of Parallelizable Problem:

� Calculate the potential energy for each of several

thousand independent conformations of a molecule.

� When done, find the minimum energy conformation.

� This problem is able to be solved in parallel.

� Each of the molecular conformations is
independently determinable.

� The calculation of the minimum energy conformation
is also a parallelizable problem.

Example of a Non-parallelizable Problem:

� Calculation of the Fibonacci series

(0,1,1,2,3,5,8,13,21,...) by use of the formula:

� F(n) = F(n-1) + F(n-2)

� This is a non-parallelizable problem because the
calculation of the Fibonacci sequence as shown
would entail dependent calculations rather than
independent ones.

Example of a Non-parallelizable
Problem

� The calculation of the F(n) value uses those of both
F(n-1) and F(n-2).

� These three terms cannot be calculated
independently and therefore, not in parallel.

Understand the Problem and the

Program

� Identify the program's hotspots:
�Know where most of the real work is being done.
The majority of scientific and technical programs
usually accomplish most of their work in a few
places.

� Profilers and performance analysis tools can help
here

� Focus on parallelizing the hotspots and ignore those
sections of the program that account for little CPU
usage.

Understand the Problem and the

Program

� Identify bottlenecks in the program

�Are there areas that are disproportionately slow,
or cause parallelizable work to halt or be
deferred? For example, I/O is usually something
that slows a program down.

�May be possible to restructure the program or use
a different algorithm to reduce or eliminate
unnecessary slow areas

3/24/2014

4

Understand the Problem and the

Program

� Identify inhibitors to parallelism. One common class of
inhibitor is data dependence, as demonstrated by the
Fibonacci sequence above.

� Investigate other algorithms if possible.

� This may be the single most important consideration
when designing a parallel application.

Partitioning

� One of the first steps in designing a parallel

program is to break the problem into discrete
"chunks" of work that can be distributed to multiple

tasks.

� This is known as decomposition or partitioning.

� There are two basic ways to partition computational

work among parallel tasks:

� domain decomposition and functional decomposition

Domain Decomposition:

� In this type of partitioning, the data associated with

a problem is decomposed.

� Each parallel task then works on a portion of the

data.

� There are different ways to partition data:

Functional Decomposition:

� In this approach, the focus is on the computation that

is to be performed rather than on the data
manipulated by the computation.

� The problem is decomposed according to the work
that must be done.

� Each task then performs a portion of the overall

work.

3/24/2014

5

� Functional decomposition lends itself well to

problems that can be split into different tasks.

� For example:

� Ecosystem Modeling

Each program calculates the population of a given
group, where each group's growth depends on that

of its neighbors.

� As time progresses, each process calculates its

current state, then exchanges information with the
neighbor populations.

� All tasks then progress to calculate the state at the
next time step.

Communications

� The need for communications between tasks depends upon
your problem:

� You DON'T need communications
� Some types of problems can be decomposed and executed in
parallel with virtually no need for tasks to share data.

� For example, imagine an image processing operation where
every pixel in a black and white image needs to have its color
reversed.

� The image data can easily be distributed to multiple tasks that
then act independently of each other to do their portion of the
work.

� These types of problems are often called embarrassingly parallel
because they are so straight-forward.

� Very little inter-task communication is required.

� You DO need communications

�Most parallel applications are not quite so simple,
and do require tasks to share data with each other.

� For example, a 3-D heat diffusion problem requires
a task to know the temperatures calculated by the
tasks that have neighboring data.

�Changes to neighboring data has a direct effect on
that task's data.

3/24/2014

6

Factors to Consider

� Cost of communications
� Inter-task communication virtually always implies
overhead.

�Machine cycles and resources that could be used for
computation are instead used to package and transmit
data.

� Communications frequently require some type of
synchronization between tasks, which can result in tasks
spending time "waiting" instead of doing work.

� Competing communication traffic can saturate the
available network bandwidth, further aggravating
performance problems.

Factors to Consider

� Latency vs. Bandwidth

� latency is the time it takes to send a minimal (0
byte) message from point A to point B.

�Commonly expressed as microseconds.

� bandwidth is the amount of data that can be
communicated per unit of time.

Factors to Consider

�Commonly expressed as megabytes/sec or
gigabytes/sec.

� Sending many small messages can cause latency to
dominate communication overheads.

�Often it is more efficient to package small
messages into a larger message, thus increasing the
effective communications bandwidth.

Factors to Consider

� Visibility of communications

�With the Message Passing Model,

� communications are explicit and generally quite
visible and under the control of the programmer.

Factors to Consider

�With the Data Parallel Model,

� communications often occur transparently to the
programmer, particularly on distributed memory
architectures.

� The programmer may not even be able to know
exactly how inter-task communications are being
accomplished.

Synchronous vs. asynchronous

communications

� Synchronous communications require some type of
"handshaking" between tasks that are sharing
data.

� This can be explicitly structured in code by the
programmer, or it may happen at a lower level
unknown to the programmer.

� Synchronous communications are often referred to
as blocking communications since other work must
wait until the communications have completed.

3/24/2014

7

Synchronous vs. asynchronous

communications

�Asynchronous communications allow tasks to transfer
data independently from one another.

� For example, task 1 can prepare and send a
message to task 2, and then immediately begin
doing other work.

�When task 2 actually receives the data doesn't
matter.

Synchronous vs. asynchronous

communications

�Asynchronous communications are often referred to
as non-blocking communications since

� other work can be done while the communications
are taking place.

� Interleaving computation with communication is the
single greatest benefit for using asynchronous
communications.

Scope of communications

�Knowing which tasks must communicate with each
other is critical during the design stage of a
parallel code.

� Both of the two scopings described below can be
implemented synchronously or asynchronously.

Scope of communications

� Point-to-point - involves two tasks with one task
acting as the sender/producer of data, and the
other acting as the receiver/consumer.

�Collective - involves data sharing between more
than two tasks, which are often specified as being
members in a common group, or collective.

Efficiency of communications

�Very often, the programmer will have a choice with
regard to factors that can affect communications
performance.

�Which implementation for a given model should be
used?

�Using the Message Passing Model as an example,

Efficiency of communications

� one MPI implementation may be faster on a given
hardware platform than another.

�What type of communication operations should be
used?

�As mentioned previously, asynchronous
communication operations can improve overall
program performance.

3/24/2014

8

Efficiency of communications

�Network media - some platforms may offer more
than one network for communications.

�Which one is best?

Synchronization

� Types of Synchronization:

� Barrier

�Usually implies that all tasks are involved

� Each task performs its work until it reaches the
barrier.

� It then stops, or "blocks".

Barrier

�When the last task reaches the barrier, all tasks
are synchronized.

�What happens from here varies.

�Often, a serial section of work must be done.

� In other cases, the tasks are automatically released
to continue their work.

Lock / semaphore

�Can involve any number of tasks

� Typically used to serialize (protect) access to global
data or a section of code.

�Only one task at a time may use (own) the lock /
semaphore / flag.

Lock / semaphore

� The first task to acquire the lock "sets" it.

� This task can then safely (serially) access the
protected data or code.

�Other tasks can attempt to acquire the lock but
must wait until the task that owns the lock releases
it.

�Can be blocking or non-blocking

Synchronous communication

operations

� Involves only those tasks executing a communication
operation

�When a task performs a communication operation,

� some form of coordination is required with the
other task(s) participating in the communication.

� For example, before a task can perform a send
operation,

� it must first receive an acknowledgment from the
receiving task that it is OK to send.

3/24/2014

9

Data Dependencies

� Definition:

� A dependence exists between program statements
when the order of statement execution affects the

results of the program.

� A data dependence results from multiple use of the
same location(s) in storage by different tasks.

� Dependencies are important to parallel
programming because they are one of the primary

inhibitors to parallelism.

Examples:

� Loop carried data dependence

� DO 500 J = MYSTART,MYEND

� A(J) = A(J-1) * 2.0

� 500 CONTINUE

� The value of A(J-1) must be computed before the
value of A(J),

� therefore A(J) exhibits a data dependency on A(J-1).
Parallelism is inhibited.

Data Dependencies

� If Task 2 has A(J) and task 1 has A(J-1),
computing the correct value of A(J)
necessitates:

�Distributed memory architecture - task 2 must
obtain the value of A(J-1) from task 1 after task 1
finishes its computation

� Shared memory architecture - task 2 must read
A(J-1) after task 1 updates it

Data Dependencies

� Loop independent data dependence

�

� task 1 task 2

� ------ ------

�

� X = 2 X = 4

� . .

� . .

� Y = X**2 Y = X**3

Data Dependencies

� As with the previous example, parallelism is
inhibited. The value of Y is dependent on:

�Distributed memory architecture - if or when the
value of X is communicated between the tasks.

� Shared memory architecture - which task last stores
the value of X.

Data Dependencies

� Although all data dependencies are important to
identify when designing parallel programs,

� loop carried dependencies are particularly important

� since loops are possibly the most common target of
parallelization efforts.

3/24/2014

10

Data Dependencies

� How to Handle Data Dependencies:

� Distributed memory architectures -
communicate required data at synchronization
points.

� Shared memory architectures -synchronize
read/write operations between tasks.

Load Balancing

� Load balancing refers to the practice of distributing

work among tasks so that all tasks are kept busy all
of the time.

� It can be considered a minimization of task idle
time.

� Load balancing is important to parallel programs

for performance reasons.

� For example, if all tasks are subject to a barrier

synchronization point, the slowest task will
determine the overall performance.

How to Achieve Load Balance:

� Equally partition the work each task receives

� For array/matrix operations where each task
performs similar work,

� evenly distribute the data set among the tasks.

� For loop iterations where the work done in each
iteration is similar, evenly distribute the iterations
across the tasks.

� If a heterogeneous mix of machines with varying
performance characteristics are being used,

� be sure to use some type of performance analysis
tool to detect any load imbalances.

� Adjust work accordingly.

� Use dynamic work assignment

�Certain classes of problems result in load
imbalances even if data is evenly distributed
among tasks:

3/24/2014

11

� Sparse arrays - some tasks will have actual data to

work on while others have mostly "zeros".

�Adaptive grid methods - some tasks may need to

refine their mesh while others don't.

�N-body simulations - where some particles may

migrate to/from their original task domain to another
task's; where the particles owned by some tasks
require more work than those owned by other tasks.

�When the amount of work each task will perform is
intentionally variable, or is unable to be predicted,
it may be helpful to use a scheduler - task pool
approach. As each task finishes its work, it queues
to get a new piece of work.

� It may become necessary to design an algorithm
which detects and handles load imbalances as they
occur dynamically within the code.

Granularity

� Computation / Communication Ratio:

� In parallel computing, granularity is a qualitative
measure of the ratio of computation to

communication.

� Periods of computation are typically separated
from periods of communication by synchronization

events.

Fine-grain Parallelism:

� Relatively small amounts of computational work are

done between communication events

� Low computation to communication ratio

� Facilitates load balancing

� Implies high communication overhead and less

opportunity for performance enhancement

� If granularity is too fine it is possible that the

overhead required for communications and
synchronization between tasks takes longer than the
computation.

Coarse-grain Parallelism:

� Relatively large amounts of computational work are

done between communication/synchronization
events

� High computation to communication ratio

� Implies more opportunity for performance increase

� Harder to load balance efficiently

3/24/2014

12

Which is Best?

� The most efficient granularity is dependent on the

algorithm and the hardware environment in which it
runs.

� In most cases the overhead associated with
communications and synchronization is high relative
to execution speed so it is advantageous to have

coarse granularity.

� Fine-grain parallelism can help reduce overheads

due to load imbalance.

I/O

� The Bad News:

� I/O operations are generally regarded as inhibitors
to parallelism

� Parallel I/O systems may be immature or not
available for all platforms

I/O

� In an environment where all tasks see the same file

space, write operations can result in file overwriting

� Read operations can be affected by the file

server's ability to handle multiple read requests at
the same time

� I/O that must be conducted over the network (non-

local) can cause severe bottlenecks and even crash
file servers.

I/O

� The Good News:

� Parallel file systems are available. For example:

�GPFS: General Parallel File System for AIX (IBM)

� Lustre: for Linux clusters (Oracle)

� The parallel I/O programming interface

specification for MPI has been available since 1996
as part of MPI-2.

� Vendor and "free" implementations are now

commonly available.

A few pointers:

�Rule #1: Reduce overall I/O as much as
possible

�If you have access to a parallel file system,
investigate using it.

�Writing large chunks of data rather than
small packets is usually significantly more
efficient.

A few pointers

� Confine I/O to specific serial portions of the job, and
then use parallel communications to distribute data to
parallel tasks.

� For example, Task 1 could read an input file and then
communicate required data to other tasks.

� Likewise, Task 1 could perform write operation after
receiving required data from all other tasks.

3/24/2014

13

A few pointers

� Use local, on-node file space for I/O if possible.

� For example, each node may have /tmp filespace which
can used.

� This is usually much more efficient than performing I/O
over the network to one's home directory.

Limits and Costs of Parallel

Programming

� Amdahl's Law:

� Amdahl's Law states that potential program
speedup is defined by the fraction of code (P) that

can be parallelized:

� speedup = 1/(1 - P)

Amdahl's Law:

� If none of the code can be parallelized, P = 0 and

the speedup = 1 (no speedup).

� If all of the code is parallelized, P = 1 and the

speedup is infinite (in theory).

� If 50% of the code can be parallelized, maximum
speedup = 2, meaning the code will run twice as

fast.

Amdahl's Law:

� Introducing the number of processors performing the

parallel fraction of work, the relationship can be
modeled by:

� speedup = 1(P/N + S)

� where P = parallel fraction, N = number of
processors and S = serial fraction.

Amdahl's Law:

� It soon becomes obvious that there are limits to the

scalability of parallelism. For example:

speedup

N P = .50 P = .90 P = .99

----- ------- ------- -------

10 1.82 5.26 9.17

100 1.98 9.17 50.25

1000 1.99 9.91 90.99

10000 1.99 9.91 99.02

100000 1.99 9.99 99.90

Amdahl's Law:

� However, certain problems demonstrate increased
performance by increasing the problem size.

� For example:

� 2D Grid Calculations 85 seconds 85%

� Serial fraction 15 seconds 15%

3/24/2014

14

Amdahl's Law:

� We can increase the problem size by doubling the

grid dimensions and halving the time step.

� This results in four times the number of grid points

and twice the number of time steps.

� The timings then look like:

� 2D Grid Calculations 680 seconds 97.84%

� Serial fraction 15 seconds 2.16%

Amdahl's Law:

� Problems that increase the percentage of parallel

time with their size are more scalable than problems
with a fixed percentage of parallel time.

Complexity:

� In general, parallel applications are much more

complex than corresponding serial applications,
perhaps an order of magnitude.

� Not only do you have multiple instruction streams
executing at the same time, but you also have data
flowing between them.

Complexity:

� The costs of complexity are measured in

programmer time in virtually every aspect of the
software development cycle:

� Design

� Coding

� Debugging

� Tuning

�Maintenance

Complexity:

� Adhering to "good" software development practices

is essential when working with parallel applications
–

� especially if somebody besides you will have to
work with the software.

Portability

� Thanks to standardization in several APIs, such as

MPI, POSIX threads, HPF and OpenMP, portability
issues with parallel programs are not as serious as

in years past.

� However...

� All of the usual portability issues associated with

serial programs apply to parallel programs.

3/24/2014

15

Portability

� For example, if you use vendor "enhancements" to

Fortran, C or C++, portability will be a problem.

� Even though standards exist for several APIs,

implementations will differ in a number of details,
sometimes to the point of requiring code
modifications in order to effect portability.

Portability

� Operating systems can play a key role in code

portability issues.

� Hardware architectures are characteristically highly

variable and can affect portability.

Resource Requirements:

� The primary intent of parallel programming is to

decrease execution wall clock time, however in
order to accomplish this, more CPU time is required.

� For example, a parallel code that runs in 1 hour on
8 processors actually uses 8 hours of CPU time.

Resource Requirements:

� The amount of memory required can be greater for

parallel codes than serial codes, due to the need to
replicate data and for overheads associated with

parallel support libraries and subsystems.

� For short running parallel programs, there can
actually be a decrease in performance compared

to a similar serial implementation.

Resource Requirements:

� The overhead costs associated with setting up the

parallel environment, task creation, communications
and task termination can comprise a significant

portion of the total execution time for short runs.

Scalability:

� The ability of a parallel program's performance to

scale is a result of a number of interrelated factors.

� Simply adding more machines is rarely the answer.

� The algorithm may have inherent limits to scalability.

3/24/2014

16

Scalability:

� At some point, adding more resources causes

performance to decrease.

� Most parallel solutions demonstrate this

characteristic at some point.

� Hardware factors play a significant role in
scalability.

Scalability:

� Examples:

�Memory-cpu bus bandwidth on an SMP machine

� Communications network bandwidth

� Amount of memory available on any given machine or
set of machines

� Processor clock speed

� Parallel support libraries and subsystems software

can limit scalability independent of your application

