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Parallel Algorithm Construction

Parallel Programming Models

Designing Parallel Programs 

� Automatic vs. Manual Parallelization 

� Understand the Problem and the Program 

� Communications 

� Synchronization 

� Data Dependencies 

Designing Parallel Programs 

� Load Balancing 

� Granularity 

� I/O 

� Limits and Costs of Parallel Programming

� Performance Analysis and Tuning

Automatic vs. Manual Parallelization

• Designing and developing parallel programs has 

characteristically been a very manual process. 

• The programmer is typically responsible for both 

identifying and actually implementing parallelism. 

• Very often, manually developing parallel codes is a 
time consuming, complex, error-prone and iterative

process. 

Automatic vs. Manual Parallelization

• For a number of years now, various tools have been 

available to assist the programmer with converting 
serial programs into parallel programs. 

• The most common type of tool used to automatically 
parallelize a serial program is a parallelizing 
compiler or pre-processor. 

Automatic vs. Manual Parallelization

• A parallelizing compiler generally works in two 

different ways: 

– Fully Automatic 

• The compiler analyzes the source code and identifies 
opportunities for parallelism. 
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Automatic vs. Manual Parallelization

• The analysis includes identifying inhibitors to 
parallelism and possibly a cost weighting on 
whether or not the parallelism would actually 
improve performance. 

• Loops (do, for) loops are the most frequent target 
for automatic parallelization. 

Automatic vs. Manual Parallelization

– Programmer Directed 

• Using "compiler directives" or possibly compiler 
flags, the programmer explicitly tells the compiler 
how to parallelize the code. 

• May be able to be used in conjunction with some 
degree of automatic parallelization also. 

Automatic vs. Manual Parallelization

• If you are beginning with an existing serial code 

and have time or budget constraints, 

• then automatic parallelization may be the answer. 

Automatic vs. Manual Parallelization

• However, there are several important caveats that 

apply to automatic parallelization: 

– Wrong results may be produced 

– Performance may actually degrade 

– Much less flexible than manual parallelization 

Automatic vs. Manual Parallelization

– Limited to a subset (mostly loops) of code 

– May actually not parallelize code if the analysis 
suggests there are inhibitors or the code is too 
complex 

• Parallel algorithms for MIMD machines discussed 

earlier applies to the manual method of developing 

parallel codes. 

recap

�Pipelined Algorithms / Algorithmic 
Parallelism 

�Partitioned Algorithms / Geometric 
Parallelism 

�Asynchronous / Relaxed Algorithms 
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Understand the Problem and the 

Program

� Undoubtedly, the first step in developing parallel 
software is to first understand the problem that 
you wish to solve in parallel. 

� If you are starting with a serial program, this 
necessitates understanding the existing code also. 

� Before spending time in an attempt to develop a 
parallel solution for a problem, 

� determine whether or not the problem is one that 
can actually be parallelized. 

Example of Parallelizable Problem:

� Calculate the potential energy for each of several 

thousand independent conformations of a molecule.

� When done, find the minimum energy conformation.

� This problem is able to be solved in parallel. 

� Each of the molecular conformations is 
independently determinable. 

� The calculation of the minimum energy conformation 
is also a parallelizable problem. 

Example of a Non-parallelizable Problem: 

� Calculation of the Fibonacci series 

(0,1,1,2,3,5,8,13,21,...) by use of the formula: 

� F(n) = F(n-1) + F(n-2) 

� This is a non-parallelizable problem because the 
calculation of the Fibonacci sequence as shown 
would entail dependent calculations rather than 
independent ones. 

Example of a Non-parallelizable 
Problem

� The calculation of the F(n) value uses those of both 
F(n-1) and F(n-2). 

� These three terms cannot be calculated 
independently and therefore, not in parallel. 

Understand the Problem and the 

Program

� Identify the program's hotspots: 
�Know where most of the real work is being done. 
The majority of scientific and technical programs 
usually accomplish most of their work in a few 
places. 

� Profilers and performance analysis tools can help 
here 

� Focus on parallelizing the hotspots and ignore those 
sections of the program that account for little CPU 
usage. 

Understand the Problem and the 

Program

� Identify bottlenecks in the program 

�Are there areas that are disproportionately slow, 
or cause parallelizable work to halt or be 
deferred? For example, I/O is usually something 
that slows a program down. 

�May be possible to restructure the program or use 
a different algorithm to reduce or eliminate 
unnecessary slow areas 
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Understand the Problem and the 

Program

� Identify inhibitors to parallelism. One common class of 
inhibitor is data dependence, as demonstrated by the 
Fibonacci sequence above. 

� Investigate other algorithms if possible. 

� This may be the single most important consideration 
when designing a parallel application.

Partitioning

� One of the first steps in designing a parallel 

program is to break the problem into discrete 
"chunks" of work that can be distributed to multiple 

tasks. 

� This is known as decomposition or partitioning. 

� There are two basic ways to partition computational 

work among parallel tasks: 

� domain decomposition and functional decomposition

Domain Decomposition: 

� In this type of partitioning, the data associated with 

a problem is decomposed. 

� Each parallel task then works on a portion of the 

data. 

� There are different ways to partition data: 

Functional Decomposition: 

� In this approach, the focus is on the computation that 

is to be performed rather than on the data 
manipulated by the computation. 

� The problem is decomposed according to the work 
that must be done. 

� Each task then performs a portion of the overall 

work. 
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� Functional decomposition lends itself well to 

problems that can be split into different tasks. 

� For example: 

� Ecosystem Modeling

Each program calculates the population of a given 
group, where each group's growth depends on that 

of its neighbors. 

� As time progresses, each process calculates its 

current state, then exchanges information with the 
neighbor populations. 

� All tasks then progress to calculate the state at the 
next time step.

Communications

� The need for communications between tasks depends upon 
your problem: 

� You DON'T need communications
� Some types of problems can be decomposed and executed in 
parallel with virtually no need for tasks to share data.

� For example, imagine an image processing operation where 
every pixel in a black and white image needs to have its color 
reversed. 

� The image data can easily be distributed to multiple tasks that 
then act independently of each other to do their portion of the 
work. 

� These types of problems are often called embarrassingly parallel
because they are so straight-forward. 

� Very little inter-task communication is required. 

� You DO need communications

�Most parallel applications are not quite so simple, 
and do require tasks to share data with each other. 

� For example, a 3-D heat diffusion problem requires 
a task to know the temperatures calculated by the 
tasks that have neighboring data. 

�Changes to neighboring data has a direct effect on 
that task's data. 
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Factors to Consider

� Cost of communications
� Inter-task communication virtually always implies 
overhead. 

�Machine cycles and resources that could be used for 
computation are instead used to package and transmit 
data. 

� Communications frequently require some type of 
synchronization between tasks, which can result in tasks 
spending time "waiting" instead of doing work. 

� Competing communication traffic can saturate the 
available network bandwidth, further aggravating 
performance problems. 

Factors to Consider

� Latency vs. Bandwidth

� latency is the time it takes to send a minimal (0 
byte) message from point A to point B. 

�Commonly expressed as microseconds. 

� bandwidth is the amount of data that can be 
communicated per unit of time. 

Factors to Consider

�Commonly expressed as megabytes/sec or 
gigabytes/sec. 

� Sending many small messages can cause latency to 
dominate communication overheads. 

�Often it is more efficient to package small 
messages into a larger message, thus increasing the 
effective communications bandwidth. 

Factors to Consider

� Visibility of communications

�With the Message Passing Model, 

� communications are explicit and generally quite 
visible and under the control of the programmer. 

Factors to Consider

�With the Data Parallel Model, 

� communications often occur transparently to the 
programmer, particularly on distributed memory 
architectures. 

� The programmer may not even be able to know 
exactly how inter-task communications are being 
accomplished. 

Synchronous vs. asynchronous 

communications

� Synchronous communications require some type of 
"handshaking" between tasks that are sharing 
data. 

� This can be explicitly structured in code by the 
programmer, or it may happen at a lower level 
unknown to the programmer. 

� Synchronous communications are often referred to 
as blocking communications since other work must 
wait until the communications have completed. 
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Synchronous vs. asynchronous 

communications

�Asynchronous communications allow tasks to transfer 
data independently from one another. 

� For example, task 1 can prepare and send a 
message to task 2, and then immediately begin 
doing other work. 

�When task 2 actually receives the data doesn't 
matter. 

Synchronous vs. asynchronous 

communications

�Asynchronous communications are often referred to 
as non-blocking communications since 

� other work can be done while the communications 
are taking place. 

� Interleaving computation with communication is the 
single greatest benefit for using asynchronous 
communications. 

Scope of communications

�Knowing which tasks must communicate with each 
other is critical during the design stage of a 
parallel code.

� Both of the two scopings described below can be 
implemented synchronously or asynchronously. 

Scope of communications

� Point-to-point - involves two tasks with one task 
acting as the sender/producer of data, and the 
other acting as the receiver/consumer. 

�Collective - involves data sharing between more 
than two tasks, which are often specified as being 
members in a common group, or collective. 

Efficiency of communications

�Very often, the programmer will have a choice with 
regard to factors that can affect communications 
performance. 

�Which implementation for a given model should be 
used? 

�Using the Message Passing Model as an example, 

Efficiency of communications

� one MPI implementation may be faster on a given 
hardware platform than another. 

�What type of communication operations should be 
used? 

�As mentioned previously, asynchronous 
communication operations can improve overall 
program performance. 
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Efficiency of communications

�Network media - some platforms may offer more 
than one network for communications. 

�Which one is best? 

Synchronization

� Types of Synchronization:

� Barrier

�Usually implies that all tasks are involved 

� Each task performs its work until it reaches the 
barrier.

� It then stops, or "blocks". 

Barrier

�When the last task reaches the barrier, all tasks 
are synchronized. 

�What happens from here varies. 

�Often, a serial section of work must be done. 

� In other cases, the tasks are automatically released 
to continue their work. 

Lock / semaphore

�Can involve any number of tasks 

� Typically used to serialize (protect) access to global 
data or a section of code. 

�Only one task at a time may use (own) the lock / 
semaphore / flag. 

Lock / semaphore

� The first task to acquire the lock "sets" it. 

� This task can then safely (serially) access the 
protected data or code. 

�Other tasks can attempt to acquire the lock but 
must wait until the task that owns the lock releases 
it. 

�Can be blocking or non-blocking 

Synchronous communication 

operations

� Involves only those tasks executing a communication 
operation 

�When a task performs a communication operation,

� some form of coordination is required with the 
other task(s) participating in the communication. 

� For example, before a task can perform a send 
operation, 

� it must first receive an acknowledgment from the 
receiving task that it is OK to send. 
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Data Dependencies

� Definition:

� A dependence exists between program statements 
when the order of statement execution affects the 

results of the program. 

� A data dependence results from multiple use of the 
same location(s) in storage by different tasks. 

� Dependencies are important to parallel 
programming because they are one of the primary 

inhibitors to parallelism. 

Examples:

� Loop carried data dependence

� DO 500 J = MYSTART,MYEND

� A(J) = A(J-1) * 2.0

� 500 CONTINUE

� The value of A(J-1) must be computed before the 
value of A(J), 

� therefore A(J) exhibits a data dependency on A(J-1). 
Parallelism is inhibited.

Data Dependencies

� If Task 2 has A(J) and task 1 has A(J-1), 
computing the correct value of A(J) 
necessitates: 

�Distributed memory architecture - task 2 must 
obtain the value of A(J-1) from task 1 after task 1 
finishes its computation 

� Shared memory architecture - task 2 must read 
A(J-1) after task 1 updates it 

Data Dependencies

� Loop independent data dependence

�

� task 1        task 2

� ------ ------

�

� X = 2         X = 4

� .             .

� .             .

� Y = X**2      Y = X**3

Data Dependencies

� As with the previous example, parallelism is 
inhibited. The value of Y is dependent on: 

�Distributed memory architecture - if or when the 
value of X is communicated between the tasks. 

� Shared memory architecture - which task last stores 
the value of X. 

Data Dependencies

� Although all data dependencies are important to 
identify when designing parallel programs, 

� loop carried dependencies are particularly important

� since loops are possibly the most common target of 
parallelization efforts. 
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Data Dependencies

� How to Handle Data Dependencies:

� Distributed memory architectures -
communicate required data at synchronization 
points. 

� Shared memory architectures -synchronize 
read/write operations between tasks. 

Load Balancing

� Load balancing refers to the practice of distributing 

work among tasks so that all tasks are kept busy all
of the time. 

� It can be considered a minimization of task idle 
time. 

� Load balancing is important to parallel programs 

for performance reasons. 

� For example, if all tasks are subject to a barrier 

synchronization point, the slowest task will 
determine the overall performance. 

How to Achieve Load Balance:

� Equally partition the work each task receives

� For array/matrix operations where each task 
performs similar work, 

� evenly distribute the data set among the tasks. 

� For loop iterations where the work done in each 
iteration is similar, evenly distribute the iterations 
across the tasks. 

� If a heterogeneous mix of machines with varying 
performance characteristics are being used, 

� be sure to use some type of performance analysis 
tool to detect any load imbalances. 

� Adjust work accordingly. 

� Use dynamic work assignment

�Certain classes of problems result in load 
imbalances even if data is evenly distributed 
among tasks: 
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� Sparse arrays - some tasks will have actual data to 

work on while others have mostly "zeros". 

�Adaptive grid methods - some tasks may need to 

refine their mesh while others don't. 

�N-body simulations - where some particles may 

migrate to/from their original task domain to another 
task's; where the particles owned by some tasks 
require more work than those owned by other tasks. 

�When the amount of work each task will perform is 
intentionally variable, or is unable to be predicted, 
it may be helpful to use a scheduler - task pool
approach. As each task finishes its work, it queues 
to get a new piece of work. 

� It may become necessary to design an algorithm 
which detects and handles load imbalances as they 
occur dynamically within the code. 

Granularity

� Computation / Communication Ratio: 

� In parallel computing, granularity is a qualitative 
measure of the ratio of computation to 

communication. 

� Periods of computation are typically separated 
from periods of communication by synchronization 

events. 

Fine-grain Parallelism: 

� Relatively small amounts of computational work are 

done between communication events 

� Low computation to communication ratio 

� Facilitates load balancing 

� Implies high communication overhead and less 

opportunity for performance enhancement 

� If granularity is too fine it is possible that the 

overhead required for communications and 
synchronization between tasks takes longer than the 
computation. 

Coarse-grain Parallelism: 

� Relatively large amounts of computational work are 

done between communication/synchronization 
events 

� High computation to communication ratio 

� Implies more opportunity for performance increase 

� Harder to load balance efficiently 
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Which is Best? 

� The most efficient granularity is dependent on the 

algorithm and the hardware environment in which it 
runs. 

� In most cases the overhead associated with 
communications and synchronization is high relative 
to execution speed so it is advantageous to have 

coarse granularity. 

� Fine-grain parallelism can help reduce overheads 

due to load imbalance. 

I/O

� The Bad News: 

� I/O operations are generally regarded as inhibitors 
to parallelism 

� Parallel I/O systems may be immature or not 
available for all platforms 

I/O

� In an environment where all tasks see the same file 

space, write operations can result in file overwriting 

� Read operations can be affected by the file 

server's ability to handle multiple read requests at 
the same time 

� I/O that must be conducted over the network (non-

local) can cause severe bottlenecks and even crash 
file servers. 

I/O

� The Good News: 

� Parallel file systems are available. For example: 

�GPFS: General Parallel File System for AIX (IBM) 

� Lustre: for Linux clusters (Oracle) 

� The parallel I/O programming interface 

specification for MPI has been available since 1996 
as part of MPI-2. 

� Vendor and "free" implementations are now 

commonly available. 

A few pointers: 

�Rule #1: Reduce overall I/O as much as 
possible 

�If you have access to a parallel file system, 
investigate using it. 

�Writing large chunks of data rather than 
small packets is usually significantly more 
efficient.

A few pointers

� Confine I/O to specific serial portions of the job, and 
then use parallel communications to distribute data to 
parallel tasks. 

� For example, Task 1 could read an input file and then 
communicate required data to other tasks. 

� Likewise, Task 1 could perform write operation after 
receiving required data from all other tasks. 
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A few pointers

� Use local, on-node file space for I/O if possible. 

� For example, each node may have /tmp filespace which 
can used. 

� This is usually much more efficient than performing I/O 
over the network to one's home directory. 

Limits and Costs of Parallel 

Programming

� Amdahl's Law: 

� Amdahl's Law states that potential program 
speedup is defined by the fraction of code (P) that 

can be parallelized: 

� speedup =  1/(1 - P )

Amdahl's Law:

� If none of the code can be parallelized, P = 0 and 

the speedup = 1 (no speedup). 

� If all of the code is parallelized, P = 1 and the 

speedup is infinite (in theory). 

� If 50% of the code can be parallelized, maximum 
speedup = 2, meaning the code will run twice as 

fast. 

Amdahl's Law:

� Introducing the number of processors performing the 

parallel fraction of work, the relationship can be 
modeled by: 

� speedup = 1(P/N + S)

� where P = parallel fraction, N = number of 
processors and S = serial fraction. 

Amdahl's Law:

� It soon becomes obvious that there are limits to the 

scalability of parallelism. For example: 

speedup

--------------------------------

N        P = .50      P = .90     P = .99

----- ------- ------- -------

10         1.82         5.26        9.17

100         1.98         9.17       50.25     

1000         1.99         9.91       90.99

10000         1.99         9.91       99.02

100000         1.99         9.99       99.90

Amdahl's Law:

� However, certain problems demonstrate increased 
performance by increasing the problem size. 

� For example: 

� 2D Grid Calculations 85 seconds 85% 

� Serial fraction 15 seconds 15% 
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Amdahl's Law:

� We can increase the problem size by doubling the 

grid dimensions and halving the time step. 

� This results in four times the number of grid points 

and twice the number of time steps. 

� The timings then look like: 

� 2D Grid Calculations 680 seconds 97.84% 

� Serial fraction 15 seconds 2.16% 

Amdahl's Law:

� Problems that increase the percentage of parallel 

time with their size are more scalable than problems 
with a fixed percentage of parallel time. 

Complexity: 

� In general, parallel applications are much more 

complex than corresponding serial applications, 
perhaps an order of magnitude. 

� Not only do you have multiple instruction streams 
executing at the same time, but you also have data 
flowing between them. 

Complexity:

� The costs of complexity are measured in 

programmer time in virtually every aspect of the 
software development cycle: 

� Design 

� Coding 

� Debugging 

� Tuning 

�Maintenance 

Complexity:

� Adhering to "good" software development practices 

is essential when working with parallel applications 
–

� especially if somebody besides you will have to 
work with the software. 

Portability

� Thanks to standardization in several APIs, such as 

MPI, POSIX threads, HPF and OpenMP, portability 
issues with parallel programs are not as serious as 

in years past. 

� However... 

� All of the usual portability issues associated with 

serial programs apply to parallel programs. 
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Portability

� For example, if you use vendor "enhancements" to 

Fortran, C or C++, portability will be a problem. 

� Even though standards exist for several APIs, 

implementations will differ in a number of details, 
sometimes to the point of requiring code 
modifications in order to effect portability. 

Portability

� Operating systems can play a key role in code 

portability issues. 

� Hardware architectures are characteristically highly 

variable and can affect portability. 

Resource Requirements: 

� The primary intent of parallel programming is to 

decrease execution wall clock time, however in 
order to accomplish this, more CPU time is required.

� For example, a parallel code that runs in 1 hour on 
8 processors actually uses 8 hours of CPU time. 

Resource Requirements:

� The amount of memory required can be greater for 

parallel codes than serial codes, due to the need to 
replicate data and for overheads associated with 

parallel support libraries and subsystems. 

� For short running parallel programs, there can 
actually be a decrease in performance compared 

to a similar serial implementation. 

Resource Requirements:

� The overhead costs associated with setting up the 

parallel environment, task creation, communications 
and task termination can comprise a significant 

portion of the total execution time for short runs.

Scalability: 

� The ability of a parallel program's performance to 

scale is a result of a number of interrelated factors.

� Simply adding more machines is rarely the answer. 

� The algorithm may have inherent limits to scalability.
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Scalability:

� At some point, adding more resources causes 

performance to decrease. 

� Most parallel solutions demonstrate this 

characteristic at some point. 

� Hardware factors play a significant role in 
scalability. 

Scalability:

� Examples: 

�Memory-cpu bus bandwidth on an SMP machine 

� Communications network bandwidth 

� Amount of memory available on any given machine or 
set of machines 

� Processor clock speed 

� Parallel support libraries and subsystems software 

can limit scalability independent of your application


