
11/23/2018

1

Introduction to Computer 
Programming

Introduction to Computer 
Programming

Introduction

2

• A programming language can be defined as –

• “The language used for expressing a set of

instructions that can be executed by the

computer”.

• Programming languages can be divided into two major

categories: low level and high level languages.

• Low level languages can be further divided into

machine and assembly languages.

• The high level languages can be, however,

categorized into three many types, that is,

Procedure, Object and Problem oriented

Low-level languages

3

• Computer hardware is a digital machine
• It works on binary electronic pulses –

0s and 1s.
• Every operation has to be expressed as 

a binary instruction. 
• The binary instructions are also called 

machine instructions. 
• A machine instruction consists of two 

parts: op-code and operand. 

Low-level languages (contd.)

4

• Machine instruction is simply a string of

binary digits.

• With a view to increase readability,

programmers assigned appropriate symbols

to the op-codes on the basis of the

operation performed by the instructions.

• The symbols of a hypothetical machine are

given in Table.

•

Low-level languages (contd.)

5

Symbol 

(mnemonic)

Binary code

Load 0000 0000

Add 0000 0001

Sub 0000 0010

: :

Stop 1111 1111

• This symbolic language for writing

programs was termed assembly language.

Assembly Language
• English-like abbreviations representing

elementary computer operations.

• The computer cannot understand 
assembly language –

• a program called assembler is used to 
convert assembly language programs 
into machine code



11/23/2018

2

7

• An assembler converts the assembly 
language program into an equivalent machine 
executable program, as shown in Fig. 

The Assembler

8

High-level Languages

• HLL is English-like,

• a statement written in this language is not

understandable to the machine.

• A high-level language translator known as a

compiler is required.

• A compiler can be precisely defined as a

program that translates a program written

in high-level language into machine

language.

9

High-level Languages

Compiling Source Code
•A program written in a high-level language is 
called a source program (or source code). 

•Program called a compiler is used to translate the 
source program into a machine language program 
called an object program. 

•The object program is often then linked with 
other supporting library code before the object 
can be executed on the machine.

10

 
Compiler Source File Object File Linker Excutable File 

Source program

• The form in which a computer 
program, written in some formal 
programming language, is written by 
the  programmer.

• Can be compiled automatically into
machine code or executed by an
interpreter.

A Linker
• A program that pulls other programs 

together so that they can run.

• Most programs are very large and consist 
of several modules.

• Even small programs use existing code 
provided by the programming environment 
called libraries.

• The linker pulls everything together, 
makes sure that references to other parts 
of the program (code) are resolved.



11/23/2018

3

Compilers & Programs
• Object program

– Output from the compiler
– Equivalent machine language translation of the 

source program

• Executable program
– Output from linker/loader
– Machine language program linked with necessary 

libraries & other files
– Files usually have extension ‘.exe’

Running Programs

Memory

Input Data

Program Output

Machine language 
program 

(executable file) 

Data entered 
during execution

Computed results

C P U

• Steps that the computer goes through to run a 
program:

Program Execution
• Steps taken by the CPU to run a

program (instructions are in machine
language):

1. Fetch an instruction

2. Decode (interpret) the instruction

3. Retrieve data, if needed

4. Execute (perform) actual processing

5. Store the results, if needed

16

The Concept of Interpretation

• An interpreter is a simple program.

• It does not translate the source code into

machine code.

• it reads the source code program line by line

and executes it.

• Therefore, an interpreter is also called a

program execution environment.

17

The Concept of Interpretation

Compilers Vs Interpreters
• Compilers

• Translate the program before it's 
executed.

• When programs are compiled, they 
are translated all at once. 

• Compiled programs typically execute 
more quickly than interpreted 
programs, but have a slower 
translation speed



11/23/2018

4

Compilers Vs Interpreters

• Interpreters

• Translate programs line-by-line 
instead of all at once (like compiled 
programs). 

• Interpreted programs generally 
translate quicker than compiled 
programs, but have a slower 
execution speed.

Syntax & Semantics
• Syntax:

– The structure of strings in some language. 
A language's syntax is described by a 
grammar. 

– Examples: 
• Binary number 

<binary_number> = <bit> | <bit>  
<binary_number>

<bit> = 0 | 1
• Identifier

<identifier> = <letter> {<letter> | <digit> }
<letter> = a | b | . . . | z
<digit = 0 | 1 | . . . | 9

• Semantics:
– The meaning of the language

Syntax & Grammars
• Syntax descriptions for a PL are 

themselves written in a formal 
language.

• The formal language is not a PL but it 
can be implemented by a compiler to 
enforce grammar restrictions.

• Some PLs look more like grammar 
descriptions than like instructions.

Program Errors
• Syntax Errors:

– Errors in grammar of the language

• Runtime error:

– When there are no syntax errors, but the program 
can’t complete execution

• Divide by zero

• Invalid input data

• Logical errors:

– The program completes execution, but delivers 
incorrect results

– Incorrect usage of parentheses

23

• Business applications: 

• These languages offer features which are suitable 

for business application development. 

• For instance, COBOL (common business-oriented 

language) was very widely used for developing 

business applications. 

• It has a strong support for file handling, a much 

needed feature by application programmers. 

• It also supports long variable and file names 

resulting in an easily readable program. 

• RPG is another language used for business 

application development. 

Programming Domains

• Scientific applications: 

• These languages support a wide variety 

of data types i.e., very large and very 

small numbers can be easily 

represented.  

• Example: ALGOL 60 and FORTRAN 

programming languages are very widely 

used to develop scientific applications.

• Even ‘C’ and C++ can be used for this 

purpose.

Programming Domains



11/23/2018

5

25

Programming Domains (contd.)

• Programming languages for artificial 

intelligence: 

• These languages are used to represent 

logical statements and their manipulation 

to arrive at a particular inference.

• LISP and PROLOG languages are widely 

used languages for this purpose.

• Parallel Programming languages: 

• These languages are designed to program 

algorithms and applications that can run on  

parallel computers. 

• The program is written as a set of 

concurrent tasks.

• These languages are also called concurrent 

programming languages. Examples:

• Concurrent Pascal, Occam, Parallel 

Fortran, and Hope

Programming Domains (contd.)

27

• The programming languages can be 

classified into five generations of 

programming languages. 

Generations of Programming Languages

1. First generation Languages (1GL)

2. Second generation Languages(2GL)

3. Third generation Languages (3GL)

4. Fourth generation Languages (4GL)

5. Fifth generation languages (5GL)

28

• The machine language comprising 0s and 1s is

termed a 1st generation computer language.

• It is a machine-dependent language designed to

program as per the architecture of the processor

of the machine

• Example machine instruction: 11010111 10011011

• Since it is a machine language, no translation is

required and the program runs very fast and

efficiently on the machine

First Generation Languages (1GL) 

29

• Assembly languages are called 2nd

generation programming languages.

• An assembly language is a sugared form of

the machine language.

• It uses symbols, called mnemonics, to write

the programming code.

• The symbolic codes are easier to

comprehend as compared to the code

written using binary language.

Second Generation Languages (2GL)

30

• These languages are also called high-level

languages.

• The architecture of a 3GL is different from

that of the underlying machine.

• As discussed earlier, 3GL (high-level

languages) are further divided into

procedural, object oriented, and problem

oriented languages.

• Examples of 3GL are: ‘C’, ‘C++’, Java, Python,

etc.

Third Generation Languages (3GL) 



11/23/2018

6

31

• 4GL have been developed keeping in view the 

following observation:

• 4GL offer non-procedural constructs such as 

‘sort’, ‘index’, ‘search’, ‘create table’ etc. 

• A non-procedural construct performs a task for 

which the programmer need not provide the 

programming logic. 

• The language has built-in logic for the construct. 

• Thus, the programming effort is drastically 

reduced. 

Fourth Generation Languages (4GL)

• For instance, a programmer can issue a statement 

such as that given below:

• ‘Search all records where Marks > 70’

• It may be noted that the programmer has not 

supplied the procedure for searching into the file 

or data base. 

• In an equivalent 3GL program, the programmer 

would have had to provide some lines of code for 

this task.

• Examples of 4GL are: FoxPro, SQL, MATLAB,

Oracle Reports etc.

Fourth Generation Languages (4GL)

33

• designed to develop machines that behave

like humans.

• these machines are capable of learning and

self-organization.

• Therefore, the machines are also called

artificially intelligent machines.

• Artificial Intelligence is a branch of

computer science concerned with making

computers behave like humans.

• Examples of 5GL are: LISP and Prolog.

Fifth Generation Languages (5GL)

Computer Fundamentals and 
Programming in C

34

The timeline of the development of some popular programming languages

Language Remarks

1950-

56

Assembly 

languages

Low level languages

1957 FORTRAN High level language for Sc. Applications

1958 ALGOL Algorithmic language supporting block 

structures

1960 COBOL, LISP Business programming and List 

processing

1962 Simula Simulation programming, first OOP 

language

1964 BASIC General purpose, easy to program 

language

1970 PROLOG, 

Hope

Logic programming language suitable for 

AI applications

Hope was a functional programming 

language

1972 ‘C’ High level language suitable for system 

programming

1973 PASCAL Block structured language 

Computer Fundamentals and 
Programming in C

35

Language Remarks

1983 Smalltalk, Ada OOP languages 

1984 ML Functional programming

1986 C++, Eiffel OOP languages

1990 Haskell Functional programming

1990-

1995 

Perl, Python, 

JavaScript, PHP

Scripting languages

1995 Java OOP language suitable for 

Internet programming

2000 C# A multi-paradigm 

programming language

2005-

2006

Ruby on Rails Web application framework

2010 (Standard) PHP Scripting language

2014 iOS/swift Programming language for 

iOS and OS X developers

The timeline of the development of some popular programming languages

Questions


