
12/12/2016

1

Introduction to Pascal Introduction to Pascal Introduction to Pascal Introduction to Pascal

Introduction

• The Pascal programming language
was created by Niklaus Wirth in
1970.

• It was named after Blaise Pascal, a
famous French Mathematician.

• It was made as a language to teach
programming.

What you will need

• Before you start learning Pascal, you
will need a Pascal compiler

• http://www.freepascal.org/

• http://www.thefreecountry.com/com
pilers/pascal.shtml

Basic Structure Of Pascal Programs

Program documentation

Program name (input and output operations);

Header

const

var

:

Declarations

begin

:

end.

Statements

Details Of The Parts
• Headers

– Program documentation

• Version number, date of last modification,
what does the program do etc.

• Comments for the reader of the program
(and not the computer)

(* Marks the beginning of the
documentation

*) Marks the end of the documentation

Details Of The Parts
– Program heading

• Name of program, input and/or output
operations performed by the program

– Example

(*

* Tax-It v1.0: This program will
electronically calculate your tax
return.

*)

program taxIt (input, output);

12/12/2016

2

Details Of The Parts
• Declarations

– List of constants and variables

Details Of The Parts

• Statements

– The instructions in the program that
actually gets stuff done

– They tell the computer what to do as
the program is running

– Each statement is separated by a
semicolon ";”

Variables
• Set aside a location in memory

• Used to store information
(temporary)

• Types:

– integer – whole numbers

– real – whole numbers and fractions

– char – alphabetic, numeric and
miscellaneous symbols

– boolean – true or false values

Variables

• Usage:

– Declaration

– Accessing or assigning values to the
variables

Declaring Variables
• Sets aside memory
• Memory locations addressed through

the name
• Naming conventions

– Should be meaningful

– Any combination of letters,
numbers or underscore (can't begin
with a number and shouldn't begin
with an underscore)

Declaring Variables

– Can't be a reserved word e.g.,
program, begin, end (see Appendix
B)

– Avoid using words with an existing
meaning e.g., integer, real, boolean,
write, writeln, read, readln

– Avoid distinguishing variable names
only by case

12/12/2016

3

Declaring Variables
– For variable names composed of multiple

words separate each word by
capitalizing the first letter of each
word (save for the first word) or by
using an underscore.

– Okay:

• tax_rate

• firstName

– Not Okay

- 1abc

- test.msg

• good-day

Declaring Variables
• Occurs in the variable declaration

("var") section

• var

name of first variable, name of second
variable…: type of variables;

• e.g.,

• var

height, weight: real;

age: integer;

Accessing And Assigning
Values To Variables

• Accessing

• Can be done by referring to the name
of the variable

• Syntax:

name

• Example:

num

Accessing And Assigning
Values To Variables (2)

• Assignment

– Performed via the assignment operator :=

– Usage:

• Destination := Source;1
– Example:

• x := 5;

• x:= y;

• interest := principle * rate;

• character := 'a';

Accessing And Assigning

– Avoid assigning mixed types

e.g.,

var

num1: integer;

num2: real;

begin

num1 = 12;

num2 = 12.5;

num2 := num1;

num1 := num2;

Not allowed!

Named Constants
• A memory location that is assigned a

value that cannot be changed

• Occurs in the constant declaration
("const") section

• The naming conventions for choosing
variable names also applies to
constants but constants should be all
UPPER CASE.

12/12/2016

4

Named Constants
• Syntax:

• const

NAME OF FIRST CONSTANT =
value of first constant;

NAME OF SECOND CONSTANT =
value of second constant; etc.

Named Constants

• Examples:

• const

TAXRATE = 0.25;

SAMPLESIZE = 1000;

YES = True;

NO = False;

Purpose of Named Constants
• 1) Makes the program easier to

understand
• e.g.,

• begin

• population_change := (0.1758 – 0.1257) *
current_population;

• Vs.

• const

• BIRTHRATE = 0.1758;

• DEATHRATE = 0.1257;

• begin

• population_change := (BIRTHRATE - DEATHRATE) *

• current_population;

Purpose of Named Constants
• 2) Makes the program easier to maintain

• If the constant is referred to several
times throughout the program.

• const

• BIRTHRATE = 0.1758;

• DEATHRATE = 0.1257;

• begin

•

•
BIRTHRATE

BIRTHRATE

DEATHRATE DEATHRATE BIRTHRATE

BIRTHRATE BIRTHRATE

BIRTHRATE

Output
• Displaying information onscreen
• Done via the write and writeln statements
• Syntax (either write or writeln):

• write ('text message');
• or
• writeln('text message');
• write(name of variable or constant);
• or
• writeln (name of variable or constant);
• write('message', name of variable, 'message'…);
• or
• writeln('message', name of variable, 'message'…);

Output (2)
• Examples:

• var

• num : integer;

• begin

• num := 10;

• writeln('line1');

• write('line2A');

• writeln('line2B');

• writeln(num);

• writeln('num=',num);

12/12/2016

5

Formatting Output
•Automatic formatting of output

•Field width: The computer will insert
enough spaces to ensure that the
information can be displayed.

•Decimal places: For real numbers the data
will be displayed in exponential form.

•Manually formatting of output:

•Syntax:

– write or writeln (data: Field width for data:
Number decimal places for data);

Formatting Output
•Examples

•var

• num : real;

•begin

• num := 12.34;

• writeln(num);

• writeln(num:5:2);

Formatting Output
•If the field width doesn’t match the
actual size of the field

– Field width too small – extra spaces will
be added for numerical variables but not
for other types of data.

– Examples:

num := 123456;

writeln(num:3);

writeln('123456':3);

Formatting Output
– Field width too large – the data will be

right justified (extra spaces will be put in
front of the data).

– Examples:

num := 123;

writeln(num:6);

Writeln('123':6);

Formatting Output
• If the number of decimal places

doesn’t match the actual number of
decimal places.

– Set number of decimal places less than
the actual number of decimal places –
number will be rounded up.

– Example:

num1 := 123.4567

writeln (num1:6:2);

Formatting Output
– Set number of decimal places greater

than the actual number of decimal
places – number will be padded with
zeros.

– Example:

num1 := 123.4567;

writeln(num1:6:6);

12/12/2016

6

A Larger Example
• program out1;
• var
• num1 : integer;
• num2 : real;
• begin
• num1 := 123;
• num2 := 123.456;
• writeln('Auto formatted by Pascal', num1, num2);
• writeln('Manual format':13, num1:3, num2:7:3);
• writeln('Manual not enough':13, num1:2, num2:6:3);
• writeln('Manual too much':16, num1:4, num2:8:4);
• end.

Input
• The computer program getting

information from the user

• Done via the read and readln statements

• Syntax:
• (single input)

• read (name of variable); or readln (name of variable);

• (multiple inputs)
• read (nv1, nv2…); or readln (nv2, nv3…);

Input

• Examples:

• var

• num1, num2 : integer

• begin

• read (num1);

• read (num2);

• read (num1, num2);

Input: Read Vs. Readln

• Both:

– Reads each value inputted and matches
it to the corresponding variable.

• Read

– If the user inputs additional values they
will remain

• Readln

– Any additional values inputted will be
discarded

Input: Read Vs. Readln
(An example)

• e.g., read1.p

• write('Input some integers making sure
to separate each one with a space ');

• write('or a new line: ');

• read (num1, num2);

• write('Input some integers making sure
to separate each one with a space ');

• write('or a newline: ');

• read(num3, num4);

Extra Uses Of Readln

• To filter out extraneous input

• As an input prompt

• e.g.,

• writeln('To continue press return');

• readln;

12/12/2016

7

Common Programming
Errors

• Syntax/compile errors

• Runtime errors

• Logic errors

Some Useful Functions
• Description Input type Type of result Example
• absolute value integer integer abs(-2) = 2

• real real abs(-
2.2) = 2.2

• rounding real integer round(2.6)
= 3

• truncation real integer trunc(2.6)
= 2

• squaring integer integer sqr(2) = 4

• real real sqr(1.1) =
1.21

• square root integer real sqrt(4) =
2.00

•

•

Questions

