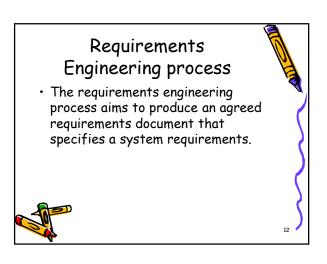
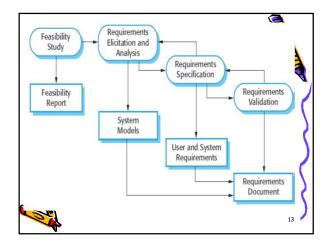
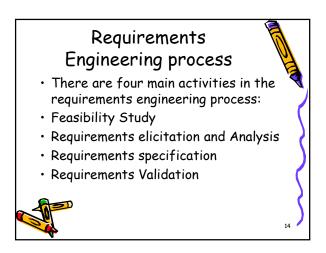

What / who / why Process

- What: Go through a series of predictable steps--- a road map that helps you create timely, high-quality results.
- Who: Software engineers and their managers, clients also.
- Why: Provides stability, control, and organization to an activity that can if left uncontrolled, become quite chaotic.


The Software Process A structured set of activities required to develop a software system A software process model is an abstract

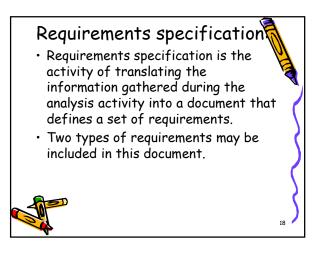

- representation of a process
- It presents a description of a process from some particular perspective



Software specification

- This is the process of understanding and defining what services are required from the system and identifying the constraints on the system's operation and development.
- Requirements engineering is a particularly critical stage of the software process as errors at this stage unavoidably lead to later problems in the system design and implementation.

Feasibility study


- An estimate is made of whether the identified user needs may be satisfied using current software and hardware technologies.
- The study considers whether the proposed system will be costeffective from a business point of view and if it can be developed within existing budgetary constraints.

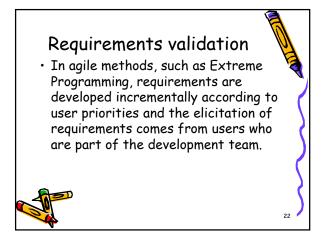
Feasibility study should be relatively cheap and quick. The result should inform the decision of whether or not to go ahead with a more detailed analysis (feasibility report).

Requirements elicitation and analysis

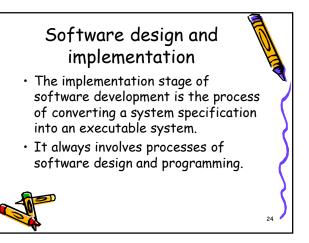
- This is the process of deriving the system requirements through observation of existing systems, discussions with potential users and buyer, task analysis.
- This may involve the development of one or more system models and prototypes.

Requirements specification

- User requirements are abstract statements of the system requirements for the customer and end-user of the system;
- System requirements are a more detailed description of the functionality to be provided.

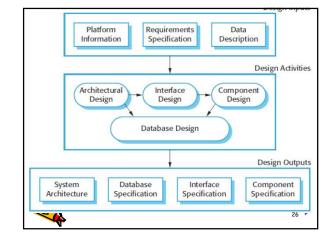

Requirements validation

- This activity checks the requirements for realism consistency, and completeness.
- During this process, errors in the requirements document are inevitably discovered.
- It must then be modified to correct these problems.

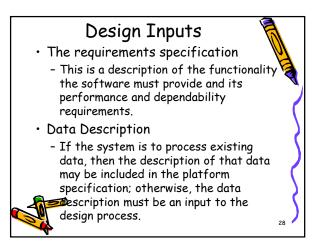

Requirements validation

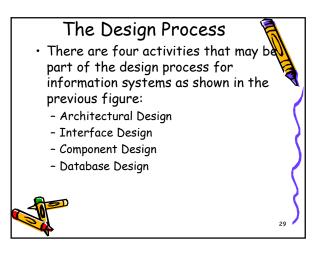
- the activities in the requirements process are not simply carried out in a strict sequence.
- Requirements analysis continues during definition and specification and new requirements come to light throughout the process. Therefore, the activities of analysis, definition, and specification are interleaved.

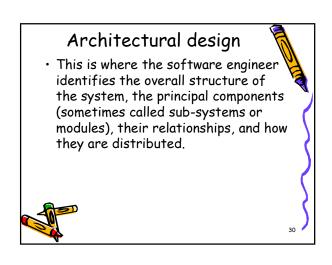
Software design and implementation


• A software design is a description of the structure of the software to be implemented, the data models and structures used by the system, the interfaces between system components and, the algorithms used.

Software design and implementation

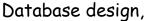

• The next Figure is an abstract model of this process showing the inputs to the design process, process activities, and the documents produced as outputs from this process





Design Inputs

- Platform Information
 - 'software platform', is the environment in which the software will execute.
 Information about this platform is an
 - essential input to the design process, as designers must decide how best to integrate it with the software's environment.

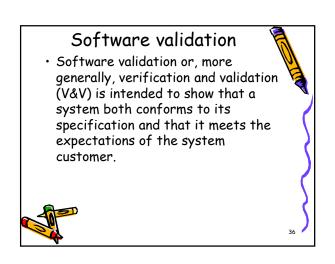

Interface design

- This is where the software engineer defines the interfaces between system components.
- This interface specification must be unambiguous.
- Once interface specifications are agreed, the components can be designed and developed concurrently.

Component design, where the software engineer takes each system component and design how it will operate.

- This may be a simple statement of the expected functionality to be implemented, with the specific design left to the programmer.
- Alternatively, it may be a list of changes to be made to a reusable
 Memponent or a detailed design model

- This is where the software engineer designs the system data structures and how these are to be represented in a database.
- The work here depends on whether an existing database is to be reused or a new database is to be created.

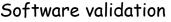

Design Outputs

- The detail and representation of these activities are varying considerably
- If a model-driven approach is used, these outputs may mostly be diagrams.
- A structured method includes a design process model, notations to represent the design, report

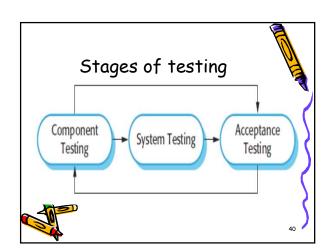
formats, rules and design guidelines.

Design Outputs

- If agile methods of development are used, the outputs of the design process be represented in the code of the program.
- After the system architecture has been designed, later stages of the design are incremental.
- Each increment is represented as program code rather than as a design


Software validation

- Program testing, where the system is executed using simulated test data, is the principal validation technique.
- Validation may also involve checking processes, such as inspections and reviews, at each stage of the software process from user requirements definition to program development.



Software validation

- The next figure shows a three-stage test process in which system components are tested then
- The integrated system is tested and, finally
- the system is tested with the customer's data.
- Ideally, component defects are discovered early in the process, and interface problems are found when the system is integrated.

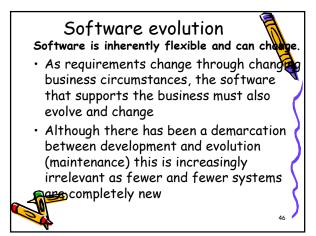
- However, as defects are discovered, the program must be debugged and this may require other stages in the testing process to be repeated.
- Errors in program components are brought to light during system testing.
- The process is therefore an iterative one with information being fed back from later stages to earlier parts of process.

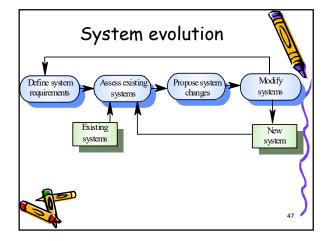
Component (or unite) testin

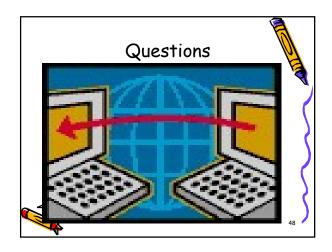
- Individual components are tested to ensure that they operate correctly.
- Each component is tested independently, without other system components.
- Components may be simple entities such as functions or object classes, or may be coherent groupings of these entities.

System testing:

- For large systems, this may be a multistage process where components are integrated to form sub- systems that are individually tested before these subsystems are themselves integrated to
 - form the final


Acceptance testing:


- This is the final stage in the testing process before the system is accepted for operational use.
- The system is tested with data supplied by the system customer rather than with simulated test data.



Acceptance testing:

- Acceptance testing may reveal errors and omissions in the system requirements definition, because the real data exercise the system in different ways from the test data.
- Acceptance testing may also reveal requirements problems where the system's facilities do not really meet the user's needs or the system performance is unacceptable.

