
4/3/2020

1

Software processesSoftware processes

1

What is a Process … ?
• When we provide a service or create a

product we always follow a sequence of
steps to accomplish a set of tasks
– You do not usually

• put up the drywall before the wiring for a house is
installed or

• bake a cake before all the ingredients are mixed
together

• We can think of a series of activities as a
process

2

What is a Process … ?
• Any process has the following

characteristics
– It prescribes all of the major activities
– It uses resources and produces

intermediate and final products
– It may include sub-processes and has

entry and exit criteria
– The activities are organized in a sequence
– Constrains or control may apply to

activities
(budget control, availability of resources)

3

Software Processes

Coherent sets of activities for
– Specifying,
– Designing,
– Implementing and
– Testing software systems

• When the process involves the building of some
product we refer to the process as a life cycle

• Software development process – software
life cycle

4

Major problems in software developments …

The requirements
specification was
defined like this

The developers
understood it in

that way

This is how the
problem was
solved before.

This is how the problem
is solved now

That is the program after
debugging

This is how the program is
described by marketing

department

This, in fact, is what the
customer wanted … ;-)

5

Social Learning Process
• Software is embodied knowledge that is

initially dispersed, tacit and incomplete.
• to convert knowledge into software,

dialogues are needed between users and
designers, between designers and tools

• Software development is essentially an
iterative social learning process, and the
outcome is “software capital”.

6
6

4/3/2020

2

What / who / why Processes
• What: Go through a series of

predictable steps--- a road map that
helps you create timely, high-quality
results.

• Who: Software engineers and their
managers, clients also.

• Why: Provides stability, control, and
organization to an activity that can if
left uncontrolled, become quite chaotic.

7
7

Definition of Software Proces
• A framework for the activities,

actions, and tasks that are required to
build high-quality software.

• Software Process (SP) defines the
approach that is taken as software is
engineered.

• Is not equal to software engineering,
which also encompasses technologies
that populate the process– technical
methods and automated tools.

8
8

The Software Process
• A structured set of activities required

to develop a software system
• A software process model is an abstract

representation of a process
– It presents a description of a process from some

particular perspective

9

The Software Process
• The four basic software process

activities are
– Specification
– Development
– Validation, and
– Evolution

10

Software specification
• This is the process of understanding and

defining what services are required from
the system and identifying the
constraints on the system’s operation and
development.

• Requirements engineering is a particularly
critical stage of the software process as
errors at this stage unavoidably lead to
later problems in the system design and
implementation.

11

Requirements
Engineering process

• The requirements engineering
process aims to produce an agreed
requirements document that
specifies a system requirements.

12

4/3/2020

3

13

Requirements
Engineering process

• There are four main activities in the
requirements engineering process:

• Feasibility Study
• Requirements elicitation and Analysis
• Requirements specification
• Requirements Validation

14

Feasibility study
• An estimate is made of whether the

identified user needs may be
satisfied using current software and
hardware technologies.

• The study considers whether the
proposed system will be cost-
effective from a business point of
view and if it can be developed within
existing budgetary constraints.

15

Feasibility study
• A feasibility study should be

relatively cheap and quick.
• The result should inform the decision

of whether or not to go ahead with a
more detailed analysis (feasibility
report).

16

Requirements elicitation
and analysis

• This is the process of deriving the
system requirements through
observation of existing systems,
discussions with potential users and
buyer, task analysis.

• This may involve the development of
one or more system models and
prototypes.

17

Requirements specification:
• Requirements specification is the

activity of translating the
information gathered during the
analysis activity into a document that
defines a set of requirements.

• Two types of requirements may be
included in this document.

18

4/3/2020

4

Requirements specification
• User requirements are abstract

statements of the system
requirements for the customer and
end-user of the system;

• System requirements are a more
detailed description of the
functionality to be provided.

19

Requirements validation
• This activity checks the

requirements for realism consistency,
and completeness.

• During this process, errors in the
requirements document are inevitably
discovered.

• It must then be modified to correct
these problems.

20

Requirements validation
• the activities in the requirements

process are not simply carried out in
a strict sequence.

• Requirements analysis continues
during definition and specification
and new requirements come to light
throughout the process. Therefore,
the activities of analysis, definition,
and specification are interleaved.

21

Requirements validation
• In agile methods, such as Extreme

Programming, requirements are
developed incrementally according to
user priorities and the elicitation of
requirements comes from users who
are part of the development team.

22

Software design and
implementation

• A software design is a description of
the structure of the software to be
implemented, the data models and
structures used by the system, the
interfaces between system
components and, the algorithms used.

23

Software design and
implementation

• The implementation stage of
software development is the process
of converting a system specification
into an executable system.

• It always involves processes of
software design and programming.

24

4/3/2020

5

Software design and
implementation

• The next Figure is an abstract model
of this process showing the inputs to
the design process, process
activities, and the documents
produced as outputs from this
process

25 26

Design Inputs
• Platform Information

– ‘software platform’, is the environment
in which the software will execute.

– Information about this platform is an
essential input to the design process, as
designers must decide how best to
integrate it with the software’s
environment.

27

Design Inputs
• The requirements specification

– This is a description of the functionality
the software must provide and its
performance and dependability
requirements.

• Data Description
– If the system is to process existing

data, then the description of that data
may be included in the platform
specification; otherwise, the data
description must be an input to the
design process.

28

The Design Process
• There are four activities that may be

part of the design process for
information systems as shown in the
previous figure:
– Architectural Design
– Interface Design
– Component Design
– Database Design

29

Architectural design
• This is where the software engineer

identifies the overall structure of
the system, the principal components
(sometimes called sub-systems or
modules), their relationships, and how
they are distributed.

30

4/3/2020

6

Interface design
• This is where the software engineer

defines the interfaces between
system components.

• This interface specification must be
unambiguous.

• Once interface specifications are
agreed, the components can be
designed and developed concurrently.

31

Component design,
• where the software engineer takes

each system component and design
how it will operate.

• This may be a simple statement of
the expected functionality to be
implemented, with the specific design
left to the programmer.

• Alternatively, it may be a list of
changes to be made to a reusable
component or a detailed design model

32

Database design,
• This is where the software engineer

designs the system data structures
and how these are to be represented
in a database.

• The work here depends on whether
an existing database is to be reused
or a new database is to be created.

33

Design Outputs
• The detail and representation of

these activities are varying
considerably

• If a model-driven approach is used,
these outputs may mostly be
diagrams.

• A structured method includes a
design process model, notations to
represent the design, report
formats, rules and design guidelines.

34

Design Outputs
• If agile methods of development are

used, the outputs of the design
process be represented in the code
of the program.

• After the system architecture has
been designed, later stages of the
design are incremental.

• Each increment is represented as
program code rather than as a design
model.

35

Software validation
• Software validation or, more

generally, verification and validation
(V&V) is intended to show that a
system both conforms to its
specification and that it meets the
expectations of the system
customer.

36

4/3/2020

7

Software validation
• Program testing, where the system is

executed using simulated test data,
is the principal validation technique.

• Validation may also involve checking
processes, such as inspections and
reviews, at each stage of the
software process from user
requirements definition to program
development.

37

Software validation
• The next figure shows a three-stage testing

process in which system components are
tested then

• The integrated system is tested and, finally,
• the system is tested with the customer’s

data.
• Ideally, component defects are discovered

early in the process, and interface problems
are found when the system is integrated.

38

Software validation
• However, as defects are discovered,

the program must be debugged and this
may require other stages in the testing
process to be repeated.

• Errors in program components are
brought to light during system testing.

• The process is therefore an iterative
one with information being fed back
from later stages to earlier parts of
the process.

39

Stages of testing

40

Component (or unite) testing:
• Individual components are tested to

ensure that they operate correctly.
• Each component is tested

independently, without other system
components.

• Components may be simple entities
such as functions or object classes,
or may be coherent groupings of
these entities.

41

System testing:
• System components are integrated to

create a complete system.
• This process is concerned with

finding errors that result from not
expected interactions between
components and component interface
problems.

42

4/3/2020

8

System testing:
• It is also concerned with showing that the

system meets its functional and non-
functional requirements, and testing the
emergent system properties.

• For large systems, this may be a multi-
stage process where components are
integrated to form sub- systems that are
individually tested before these sub-
systems are themselves integrated to
form the final

43

Acceptance testing:
• This is the final stage in the testing

process before the system is
accepted for operational use.

• The system is tested with data
supplied by the system customer
rather than with simulated test data.

44

Acceptance testing:
• Acceptance testing may reveal errors

and omissions in the system
requirements definition, because the
real data exercise the system in
different ways from the test data.

• Acceptance testing may also reveal
requirements problems where the
system’s facilities do not really meet
the user’s needs or the system
performance is unacceptable.

45

Software evolution
Software is inherently flexible and can change.
• As requirements change through changing

business circumstances, the software
that supports the business must also
evolve and change

• Although there has been a demarcation
between development and evolution
(maintenance) this is increasingly
irrelevant as fewer and fewer systems
are completely new

46

System evolution

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systems

47

Questions

48

