

Introduction

- Reuse can save a given amount of work, when existing components providing a given funtionality are reused.
- existing components might also have lots of testing received so far so we can possibly build more reliable systems based on them.

Introduction

- Nowadays more and more software projects apply reuse to some extent, however, some of them relies more on reused components than others.
- Reuse often happens in an informal way when people working on the project know of designs or code that are similar to what is required.

Introduction

- They look for these, modify them as needed, and incorporate them into their system.
- This is basically the application of patterns in the development process.
- A general process model for reuseoriented software engineering is shown in the below figure

Reuse-oriented software engineering Requirements specification Requirements specification Requirements specification Requirements system design with reuse Development analysis System validation

Requirement specification

 Requirement specification and system validation stages are general processes used in different software process but other stages used in this model are different

Component Analysis

- According to given requirements, a component is selected to implement that requirement specification.
- It is not usually possible that the selected component will provide the complete functionalities, but it is possible that the component used may provide some of the functionalities required

- Information about a component that is selected during component analysis is used to analyse the requirement specifications.
- Requirements are then modified according to available components.
- Where modifications are impossible, the component analysis activity may be re-entered to search for alternative solutions

System design with reuse

- During this stage the framework of the system is designed or an existing framework is reused.
- The architects will perform the design by taking into account the components that are reused and they will organize the framework accordingly.
- New pieces of software may have to be designed if reusable components are not available.

Development and Integration

- Software that cannot be externally procured is developed, and the components and commercial-off-theshelf (COTS) systems are integrated to create the new system.
- System integration, in this model, may be part of the development process rather than a separate activity.

Advantages

- It can reduce the overall cost of software development as compared to other model.
- · It can reduce the risk.
- It can save the time of software development. b/c testing of component is minimize.
- · Faster delivery of software.

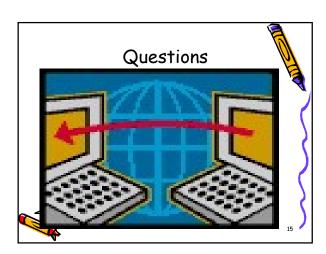
Disadvantages

- Reuse-oriented model is not always practical in its pure form.
- Compromises in Requirement may lead to a system that does not meet the real requirement of the user.
- Organization using the reusable component, are not able to control the new version of component, this may lead to lost control over the system evolution.

12

types of software components

- There are three types of software components that can be used in a reuse-oriented process:
- Web services that are developed according to well-known service standards and which will become available for remote invocation.


3

types of software component

- Collections of objects that are developed as a package to be integrated with a component framework such like .NET or Java EE.
- Standalone software systems that are configured for use in a particular environment.

14

