
4/3/2020

1

Coping with change in 
software engineering
Coping with change in 
software engineering

• Change is inevitable in all large 
software projects.

• Business changes lead to new and 
changed system requirements

• New technologies open up new 
possibilities for improving 
implementations

• Changing platforms require 
application changes

• Change leads to rework so the costs 
of change include both rework (e.g. 
re-analysing requirements) as well as 
the costs of implementing new 
functionality

Reducing the costs of 
rework

• Change avoidance and change 
tolerance approaches can be used to 
reduce the cost of rework

• This is where the software process 
includes activities that can anticipate 
possible changes before significant 
rework is required

Reducing the costs of 
rework

• The following approaches can be 
used.
– Prototyping
– Incremental delivery
– Spiral model

• A prototype is a version of a system 
or part of the system that’s 
developed quickly to check the 
customer’s requirements or 
feasibility of some design decisions.

• Or A prototype is an initial version of 
a system used to demonstrate 
concepts and try out design options



4/3/2020

2

• a prototype is useful when a 
customer or developer is not sure of 
the requirements, or of algorithms, 
efficiency, business rules, response 
time, etc.

• In prototyping, the client is involved 
throughout the development process, 
which increases the likelihood of 
client acceptance of the final 
implementation.

Purpose of prototyping
• In the requirements engineering, a 

prototype can help with the 
elicitation and validation of system 
requirements.
– It allows the users to experiment with 

the system, and so, refine the 
requirements. 

– They may get new ideas for 
requirements, and find areas of 
strength and weakness in the software.

Purpose of prototyping
– Furthermore, as the prototype is 

developed, it may reveal errors in the 
requirements. 

– The specification maybe then modified 
to reflect the changes.

Purpose of prototyping
• In the system design, a prototype 

can help to carry out deign 
experiments to check the feasibility 
of a proposed design.
– For example, a database design may be 

prototype-d and tested to check if it 
supports efficient data access for the 
most common user queries.

The prototype 
development Model

The phases of a prototype
• Establish objectives: 

– The objectives of the prototype should 
be made explicit from the start of the 
process. 

– Is it to validate system requirements, or 
demonstrate feasibility, etc.



4/3/2020

3

The phases of a prototype
• Define prototype functionality:

– Decide what are the inputs and the 
expected output from a prototype. 

– To reduce the prototyping costs and 
accelerate the delivery schedule, you 
may ignore some functionality, such as 
response time and memory utilization 
unless they are relevant to the 
objective of the prototype.

The phases of a prototype
• Develop the prototype: The initial 

prototype is developed that includes 
only user interfaces.

• Evaluate the prototype: Once the 
users are trained to use the 
prototype, they then discover 
requirements errors. 

The phases of a prototype
• Using the feedback both the 

specifications and the prototype can 
be improved. 

• If changes are introduced, then a 
repeat of steps 3 and 4 may be 
needed

Prototyping
• Prototyping is not a standalone, 

complete development methodology, 
but rather an approach to be used in 
the context of a full methodology 
(such as incremental, spiral, etc).

Incremental Model
• Incremental Model is a process of 

software development where 
requirements are broken down into 
multiple standalone modules of 
software development cycle.

• Incremental development is done in 
steps from analysis, design, 
implementation, testing/verification, 
maintenance.

Incremental Model
• Each iteration passes through 

the requirements, design, coding 
and testing phases. 

• And each subsequent release of the 
system adds function to the previous 
release until all designed 
functionality has been implemented.



4/3/2020

4

Incremental Development
• Incremental development is based on 

the idea of developing an initial 
implementation, exposing this to user 
feedback, and evolving it through 
several versions until an acceptable 
system has been developed.

• The activities of a process are not 
separated but interleaved with 
feedback involved across those 
activities

Incremental Development Model

Incremental Development Model
Incremental Phases Activities performed in incremental 

phases

Requirement Analysis •Requirement and specification of the 
software are collected

Design •Some high-end function are designed 
during this stage

Code •Coding of software is done during this 
stage

Test •Once the system is deployed, it goes 
through the testing phase

Incremental Development Model
• Each system increment reflects a 

piece of the functionality that is 
needed by the customer. 

• Generally, the early increments of 
the system should include the most 
important or most urgently required 
functionality.

Incremental Development Model
• This means that the customer can 

evaluate the system at early stage in 
the development to see if it delivers 
what’s required. 

• If not, then only the current 
increment has to be changed and, 
possibly, new functionality defined 
for later increments.

Characteristics of an 
Incremental Model

• System development is broken down 
into many mini development projects

• Partial systems are successively built 
to produce a final total system

• Highest priority requirement is 
tackled first

• Once the requirement is developed, 
requirement for that increment are 
frozen



4/3/2020

5

Advantages of Incremental
• The software will be generated quickly 

during the software life cycle
• It is flexible and less expensive to 

change requirements and scope
• Throughout the development stages 

changes can be done
• This model is less costly compared to 

others
• A customer can respond to each building
• Errors are easy to be identified

DisAdvantages of Incremental
• Problems might be caused due to 

system architecture and as such not 
all requirements can be collected up 
front for the entire software 
lifecycle

• Each iteration phase is rigid and does 
not overlap each other

When to use Incremental models
• Requirements of the system are 

clearly understood
• When demand for an early release of 

a product arises
• When software engineering team are 

not very well skilled or trained
• When high-risk features and goals 

are involved
• Such methodology is more in use for 

web application and product based 
companies

Spiral model
• The spiral model is a risk-driven 

model where the process is 
represented as spiral rather than a 
sequence of activities.

• It was designed to include the best 
features from the waterfall and 
prototyping models, and introduces a 
new component; risk-assessment

• The initial phase of the Spiral model 
is the early stages of Waterfall Life 
Cycle that are needed to develop a 
software product. 

• the project is delivered in loops. 
• Each loop in the Spiral model is the 

phases of the software development 
process.

Spiral model



4/3/2020

6

Spiral model
• In this model, the exact number of 

phases for developing a product 
varied based on some constraints and 
by project manager which calculates 
the project risks. 

• Here the project manager 
dynamically decides the number of 
phases and hence play a significant 
role in the development of a product 
using the spiral model

Spiral model
• Each loop in the spiral represents a 

phase. 
• Thus the first loop might be 

concerned with system feasibility, 
the next loop might be concerned 
with the requirements definition, the 
next loop with system design, and so 
on.

Phases in the Spiral
• Each loop in the spiral is split into 

four sectors:
• Objective setting: 

– The objectives and risks for that phase 
of the project are defined.

Phases in the Spiral
• Risk assessment and reduction:

– For each of the identified project risks, 
a detailed analysis is conducted, and 
steps are taken to reduce the risk. 

– For example, if there’s a risk that the 
requirements are inappropriate, a 
prototype may be developed.

Phases in the Spiral
• Development and validation:

– After risk evaluation, a process model 
for the system is chosen. 

– So if the risk is expected in the user 
interface then we must prototype the 
user interface. 

– If the risk is in the development 
process itself then use the waterfall 
model.

Phases in the Spiral
• Planning:

– The project is reviewed and a decision is 
made whether to continue with a 
further loop or not



4/3/2020

7

Advantages
• Suitable for large projects: Spiral 

models are recommended when the 
project is large, bulky or complex to 
develop.

• Requirements flexibility: All the 
specific requirements needed at 
later stages can be included precisely 
if the development is done using this 
model

Advantages
• Risk Handling: There are a lot of 

projects that have un-estimated 
risks involved with them. For such 
projects, the spiral model is the best 
SDLC model to pursue because it can 
analyze risk as well as handling risks 
at each phase of development.

Advantages
• Customer Satisfaction: Customers 

can witness the development of 
product at every stage and thus, they 
can let themselves habituated with 
the system and throw feedbacks 
accordingly before the final product 
is made.

Disadvantages
• Complex: The Spiral Model is much 

more complex than other SDLC 
models.

• Expensive: Spiral Model is not 
suitable for small projects as it is 
expensive.

• Difficulty in time management: As 
the number of phases is unknown at 
the start of the project, so time 
estimation is very difficult.

Disadvantages
• Too much dependable on Risk 
Analysis: The successful completion 
of the project is very much 
dependent on Risk Analysis. Without 
very highly experienced expertise, it 
is going to be a failure to develop a 
project using this model.

Questions


