
4/8/2020

1

Extreme
Programming (XP)

Extreme
Programming (XP)

1 2

Extreme Programming (XP)
• An agile method, developed in the late

1990s, that introduced a range of agile
development techniques.

• XP takes an ‘extreme’ approach to
iterative development.
– New versions may be built several times per

day;
– Increments are delivered to customers

every 2 weeks;
– All tests must be run for every build and the

build is only accepted if tests run
successfully.

XP principles and practices
• Incremental planning.

– Requirements are recorded on story
cards and the stories to be included in a
release are determined by the time
available and their relative priority.

– The developers break these stories into
development ‘Tasks’.

3

XP principles and practices
• Small releases.

– The minimal useful set of functionality
that provides business value is
developed first. Releases of the system
are frequent and incrementally add
functionality to the first release.

• Test-first development.
– An automated unit test framework is

used to write tests for a new piece of
functionality before that functionality
itself is implemented.

4

XP principles and practices
• Refactoring.

– All developers are expected to refactor
the code continuously as soon as
possible code improvements are found.
This keeps the code simple and
maintainable.

• Pair programming.
– Developers work in pairs, checking each

other’s work and providing the support
to always do a good job.

5

XP principles and practices
• Simple design.

– Enough design is carried out to meet the
current requirements and no more.

• Collective ownership.
– The pairs of developers work on all

areas of the system, so that no islands
of expertise develop and all the
developers take responsibility for all of
the code. Anyone can change anything.

6

4/8/2020

2

XP principles and practices
• Continuous integration.

– As soon as the work on a task is
complete, it is integrated into the whole
system. After any such integration, all
the unit tests in the system must pass.

• Sustainable pace.
– Large amounts of overtime are not

considered acceptable as the net effect
is often to reduce code quality and
medium term productivity

7

XP principles and practices
• On-site customer.

– A representative of the end-user of the
system (the customer) should be
available full time for the use of the XP
team.

– In an extreme programming process, the
customer is a member of the
development team and is responsible for
bringing system requirements to the
team for implementation.

8

Influential XP practices

• The following are the XP Key
practices
– User stories for specification
– Refactoring
– Test-first development
– Pair programming

9

User stories for requirements
• In XP, a customer is part of the XP

team and is responsible for making
decisions on requirements.

• User requirements are expressed as
user stories or scenarios.

• These are written on cards and the
development team break them down
into implementation tasks.

10

11

User stories
• These tasks are the basis of schedule and

cost estimates.
• The customer chooses the stories for

inclusion in the next release based on their
priorities and the schedule estimates.

Refactoring
• Conventional wisdom in software

engineering is to design for change.
– It is worth spending time and effort

anticipating changes as this reduces
costs later in the life cycle.

• XP, however, maintains that this is
not worthwhile as changes cannot be
reliably anticipated.

12

4/8/2020

3

Refactoring
• Rather, it proposes constant code

improvement (refactoring) to make
changes easier when they have to be
implemented.

• Programming team look for possible
software improvements and make
these improvements even where
there is no immediate need for them.

13

Refactoring
• This improves the understandability

of the software and so reduces the
need for documentation.

• Changes are easier to make because
the code is well-structured and clear.

• However, some changes requires
architecture refactoring and this is
much more expensive.

14

Test-first development
• Testing is central to XP where the

program is tested after every change
has been made.

• XP testing features include:
– Test-first development.
– Incremental test development.
– User involvement in test development

and validation.
– Automated test frameworks are used to

run all component tests each time that a
new release is built.

15

Test-first development
• Instead of writing some code and then

writing tests for that code, you write
the tests before you write the code.

• Writing tests before code clarifies
the requirements to be implemented.

• Tests are written as programs rather
than data so that they can be
executed automatically.
– The test includes a check that it has

executed correctly.

16

Test-first development
– Usually relies on a testing framework

such as JUnit.
• All previous and new tests are run

automatically when new functionality
is added, thus checking that the new
functionality has not introduced
errors.

17

Test automation
• Tests are written as executable

components before the task is
implemented
– These testing components should be stand-

alone, should simulate the submission of
input to be tested and should check that
the result meets the output specification.

18

4/8/2020

4

Test automation
– An automated test framework (e.g.

JUnit) is a system that makes it easy to
write executable tests and submit a set
of tests for execution.

19

Test automation
• As testing is automated, there is

always a set of tests that can be
quickly and easily executed
– Whenever any functionality is added to

the system, the tests can be run and
problems that the new code has
introduced can be caught immediately.

20

Pair programming
• Pair programming involves

programmers working in pairs,
developing code together.
– This helps develop common ownership of

code and spreads knowledge across the
team.

– It serves as an informal review process
as each line of code is looked at by more
than 1 person.

21

Pair programming
• It encourages refactoring as the

whole team can benefit from
improving the system code.

• In pair programming, programmers
sit together at the same computer to
develop the software.

• Pairs are created dynamically so that
all team members work with each
other during the development
process.

22

Pair programming
– The sharing of knowledge that happens

during pair programming is very important
as it reduces the overall risks to a
project when team members leave.

– Pair programming is not necessarily
inefficient and there is some evidence
that suggests that a pair working
together is more efficient than 2
programmers working separately.

23

SCRUMSCRUM

24

4/8/2020

5

25

Scrum
• A software development method

Originally proposed by Schwaber
and Beedle (an activity occurs
during a rugby match) in early 1990.

• Scrum is an agile method that
focuses on managing iterative
development rather than specific
agile practices.

Scrum
• There are three phases in Scrum.

– The initial phase is an outline planning
phase where you establish the general
objectives for the project and design
the software architecture.

– This is followed by a series of sprint
cycles, where each cycle develops an
increment of the system.

26

Scrum
– The project closure phase wraps up the

project, completes required
documentation such as system help
frames and user manuals and assesses
the lessons learned from the project.

27

Scrum
• Scrum—distinguishing features

–Development work is partitioned
into “packets”

–Testing and documentation are on-
going as the product is constructed

–Work units occurs in “sprints” and
is derived from a “backlog” of
existing changing prioritized
requirements

28

Scrum
–Changes are not introduced in
sprints (short term but stable) but
in backlog.

–Meetings are very short (15
minutes daily) and sometimes
conducted without chairs (what did
you do since last meeting? What
obstacles are you encountering?
What do you plan to accomplish by
next meeting?)

29

Scrum
–“demos” are delivered to the
customer with the time-box
allocated.

–May not contain all functionalities.
–So customers can evaluate and give
feedbacks.

30

4/8/2020

6

31

Scrum sprint cycle
The Scrum sprint cycle
• Sprints are fixed length, normally 2–

4 weeks.
• The starting point for planning is the

product backlog, which is the list of
work to be done on the project.

• The selection phase involves all of
the project team who work with the
product owner to select the features
and functionality from the product
backlog to be developed during the
sprint. 32

The Scrum sprint cycle
• Once these are agreed, the team

organize themselves to develop the
software (assignments and
evaluations of the tasks).

• Production of the sprint backlog,
that contains all the task that will be
developed in that sprint.

• Start the sprint

33

The Scrum sprint cycle
• During this stage the team is isolated

from the customer and the
organization, with all communications
channeled through the so-called
‘Scrum master’.

• The role of the Scrum master is to
protect the development team from
external distractions.

34

The Scrum sprint cycle
• At the end of the sprint, the work

done is reviewed and presented to
stakeholders. The next sprint cycle
then begins.

35 36

4/8/2020

7

Teamwork in Scrum
• The ‘Scrum master’ is a facilitator

who arranges daily meetings, tracks
the backlog of work to be done,
records decisions, measures progress
against the backlog and
communicates with customers and
management outside of the team.

37

Teamwork in Scrum
• The whole team attends short daily

meetings (Scrums) where all team
members share information, describe
their progress since the last meeting,
problems that have arisen and what is
planned for the following day.

• This means that everyone on the team
knows what is going on and, if
problems arise, can re-plan short-term
work to cope with them.

38

Scrum benefits
• The product is broken down into a

set of manageable and
understandable chunks.

• Unstable requirements do not hold up
progress.

• The whole team have visibility of
everything and consequently team
communication is improved.

39

Scrum benefits
• Customers see on-time delivery of

increments and gain feedback on how
the product works.

• Trust between customers and
developers is established and a
positive culture is created in which
everyone expects the project to
succeed.

40

Scaling agile methods
• Agile methods have proved to be

successful for small and medium
sized projects that can be developed
by a small co-located team.

• It is sometimes argued that the
success of these methods comes
because of improved communications
which is possible when everyone is
working together.

41

Scaling agile methods
• The need for faster delivery of

software, which is more suited to
customer needs, also applies to larger
systems, and therefore to larger
companies.

• Scaling up agile methods involves
changing these to cope with larger,
longer projects where there are
multiple development teams, perhaps
working in different locations.

42

4/8/2020

8

Scaling out and up
• ‘Scaling up’ is concerned with using

agile methods for developing large
software systems that cannot be
developed by a small team.

• ‘Scaling out’ is concerned with how
agile methods can be introduced
across a large organization with many
years of software development
experience.

43

Scaling out and up
• When scaling agile methods it is

important to maintain agile
fundamentals:
– Flexible planning, frequent system

releases, continuous integration, test-
driven development and good team
communications.

44

Questions

45

